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1 Divergence and Curl

These operators act on vector fields. What is a vector field? It is simply a space where each point is assigned a
vector. For example, if I specify the components of a vector field A as,

A = Axî +Ay ĵ +Azk̂, (1)

and write down the components as functions of coordinates Ax(x, y, z), Ay(x, y, z), Az(x, y, z), then one can define
what the vector A looks like at each point in space. A is then called a vector field. We encounter vector fields all
the time in physics - could be fluid velocity, electric field, magnetic field etc.

The upward down triangle operator (∇), otherwise known as the ‘del’ or ‘nabla’ operator can be written down
in cartesian coordinates as

∇ ≡ ∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂ (2)

This makes it easy to remember the operations of divergence and curl where this operator kind of behaves like a
vector.

Divergence

In terms of this operator, the divergence of a vector field can be written down as,

∇ ·A = (
∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂) · (Axî +Ay ĵ +Azk̂) =

∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

(3)

Note that, the divergence of a vector field gives a scalar field (keep in mind that ‘field’ simply means that stuff varies
in space and is a function of coordinates). The divergence of a vector field tells you by how much the components
change when moved in the corresponding direction. Now, imagine you are near a ‘source’. The vectors will diverge
out from that point, leading to a positive gradient in all directions moving away from that point. This consequently
leads to a positive divergence. Thus, a positive divergence, as the name signifies, tells you that stuff is diverging
away from that point and there is a source. The opposite is true for a ‘sink’. This is further illustrated in figure 1.

In spherical coordinates (r, θ, φ), this operator looks like below:

∇ ·A =
1

r2
∂

∂r
(r2Ar) +

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ
∂φ

(4)

Curl

In terms of the ∇ operator, the curl of a vector field can be written as,

∇×A =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

∂

∂x

∂

∂y

∂

∂z

Ax Ay Az

∣∣∣∣∣∣∣∣∣ =

(
∂Az
∂y
− ∂Ay

∂z

)
î +

(
∂Ax
∂z
− ∂Az

∂x

)
ĵ +

(
∂Ay
∂x
− ∂Ax

∂y

)
k̂ (5)

The curl of a vector field gives another vector field that denotes the direction and magnitude of rotation of the
first vector field. This is shown in figure 2.
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Figure 1: Electric field due to two charges, positive (source) and negative (sink). The divergence clearly shows the
charges.
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Figure 2: Curl of a vector field A. The curl on the right hand side shows the direction of rotation, the arrow lengths
showing the magnitude. Note how the arrow lengths increase outward for both plots.
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2 Induction equation

To understand how dynamos operate, it might be useful to have an equation that tells us how the magnetic
field evolves due to various effects that act on it. We will first begin by writing down Maxwell’s equations of
electromagnetism,

∇×E = −∂B
∂t

, (6)

∇×B = µ0J +
1

c2
∂E

∂t
, (7)

∇ ·E =
ρe
ε0
, (8)

∇ ·B = 0. (9)

It can be shown that while dealing with velocities which are really slow compared to the speed of light, we can
ignore displacement currents (1/c2(∂E/∂t)) and thus, we end up with what are known as ‘pre-Maxwell’ equations,

∇×E = −∂B
∂t

, (10)

∇×B = µ0J , (11)

∇ ·E =
ρe
ε0
, (12)

∇ ·B = 0. (13)

Lastly, we need one more equation to obtain the desired induction equation. This is given by Ohm’s law,

J = σ(E + u×B), (14)

where u is the velocity of the moving frame (the fluid velocity in our case of studying dynamos).

Why do we ignore displacement current?

If the typical strengths of electric and magnetic fields are E∗ and B∗ then using ∇ × E = −∂B
∂t

, we can

write

E∗

L
∼ B∗

τ
,

⇒E∗ ∼ B∗L

τ
,

where L and τ are typical timescales of motion. Consider the terms,

|∇ ×B| ∼ B∗

L
,

and

1

c2

∣∣∣∣∂E∂t
∣∣∣∣ ∼ 1

c2
E∗

τ
=

1

c2
B∗L

τ2
.

The ratio is

1/c2|∂E/∂t|
|∇ ×B| ∼ L2/τ2

c2
=
u2

c2
� 1,

where, u is a typical velocity scale of astrophysical fluids and is much less than the speed of light.
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Where does the u×B come from in Ohm’s law?

If you are a charged particle in a frame moving with velocity u in the presence of a magnetic field B, the
force acting on you is,

FL = qu×B,

where q is the charge on the particle. Thus, it is equivelent to saying that there is an electric field EL = u×B
acting on the charged particle. Thus, if an electric field E is present at the same time, the resultant electric
field becomes

Er = E + u×B.

To derive an equation for the evolution of magnetic field in a dynamo, we need an equation for
∂B

∂t
in terms of

u and B. There are two ways to obtain it.

Method I

From (11), we obtain,

∂B

∂t
= −∇×E

= −∇×
(
J

σ
− u×B

)
= −∇×

(
1

µ0σ
∇×B − u×B

)
,

(15)

where we have used (14) in the second step and (12) in the third step. Thus,

∂B

∂t
= ∇×

(
u×B − 1

µ0σ
∇×B

)
. (16)

Method II

From (12), we obtain,

∇×B = µ0J = µ0σ(E + u×B)

⇒ 1

µ0σ
∇×B = E + u×B.

(17)

where we have used Ohm’s law (14). To obtain an equation for
∂B

∂t
, we need to use (11). To do so, we take the

curl (∇×) of both sides, and get

∇× 1

µ0σ
∇×B = ∇×E +∇× u×B

⇒∇× 1

µ0σ
∇×B = −∂B

∂t
+∇× u×B.

(18)

Rearranging the above, we get,

∂B

∂t
= ∇×

(
u×B − 1

µ0σ
∇×B

)
. (19)
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Object λ(m2/s) L(m) U(m/s) Rm
Earth’s core 2 3× 106 3× 10−4 450

Star 0.5 109 1 2× 109

Cu sphere 0.15 1 1 6

Table 1: Typical Rm values for various objects. Think what it might be for a galaxy.

The quantity 1/µ0σ is referred to as ‘magnetic diffusivity’ and can is denoted by either λ or η depending on who
writes it. In these notes, I will use λ. Thus, the equation for the evolution of magnetic field is given by the
induction equation,

∂B

∂t
= ∇× (u×B − λ∇×B) . (20)

Special case: when λ is a constant

In the case when λ can be assumed to be a constant, the induction equation can be written as,

∂B

∂t
= ∇× (u×B)− λ∇×∇×B. (21)

Using the vector identity, ∇×∇× = ∇(∇·)−∇2 and ∇ ·B = 0, we obtain,

∂B

∂t
= ∇× (u×B) + λ∇2B. (22)

We will take λ to be constant for now. In case not, there is an extra term of (−∇λ×∇×B) on the RHS.
The first term in equation (22) determines the interaction between fluid flow and magnetic field and contributes

to production of magnetic field. The second term is responsible for Ohmic dissipation. Note that the dissipation
term is similar to the one for heat. Taking the dimensional ratio of the two terms on the RHS, we get,

|∇ × (u×B) |
|λ∇2B| =

UB/L

λB/L2
=
UL

λ
, (23)

where, U,B and L are typical scales of fluid velocity, magnetic field and length, respectively. This quantity is
defined as the magnetic Reynolds number, Rm,

Rm =
UL

λ
= ULµ0σ, (24)

where we have used the definition of λ = 1/µ0σ. Thus, Rm depends on the typical flow length-scale, flow speed
and conductivity of the fluid. Typical Rm values are given in table 1.

Using vector identities, the first term on the right hand side in (22) can be expanded and the equation can be
rewritten as

∂B

∂t︸︷︷︸
Change in time

= B · ∇u︸ ︷︷ ︸
Stretching

−u · ∇B︸ ︷︷ ︸
Advection

−B(∇ · u)︸ ︷︷ ︸
Expansion/compression

+ λ∇2B︸ ︷︷ ︸
Dissipation

, (25)

where the various contributions have been labelled. Terms such as u · ∇B refer to the material derivative, which
essentially tell us how one a gradient of one quantity varies along the other. The first term tells us how magnetic
fields are stretched and twisted by fluid motions. The second term tells us how the magnetic field is carried around
(‘advected’) by the fluid motions, while the third term expresses how changes are induced in the magnetic field due
to expansion or compression of the fluid at a point.
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Figure 3: Spherical coordinates. r is the radial distance from origin, φ is the longitude, measure counterclockwise
from x-axis, while θ is the colatitude, measure from the z-axis.

3 Solution to Laplace’s equation

In an insulating medium, there are no electric currents, hence,

µ0J = ∇×B = 0. (26)

which means B can be written in terms of the gradient of a scalar potential (since curl of a gradient is always zero),

B = −∇V. (27)

Thus, ∇ ·B = 0 gives us
∇2V = 0. (28)

Expanding this in spherical coordinates (r, θ, φ) (figure 3), we get

1

r2
∂

∂r

(
r2
∂

∂r
V

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ
V

)
+

1

r2 sin2 θ

∂2

∂φ2
V = 0. (29)

To solve this, we will use separation of variables. We write the scalar V (r, θ, φ) as a product of three functions

V = R(r)Θ(θ)Φ(φ). (30)

Substituting and multiplying by r2, we get

ΘΦ
d

dr

(
r2
d

dr
R

)
+

RΦ

sin θ

d

dθ

(
sin θ

d

dθ
Θ

)
+

RΘ

sin2 θ

d2

dφ2
Φ = 0. (31)

Dividing throughout by V = RΘΦ (assumption : V 6= 0 anywhere in the domain of study), we obtain,

1

R

d

dr

(
r2
d

dr
R

)
+

1

Θ sin θ

d

dθ

(
sin θ

d

dθ
Θ

)
+

1

Φ sin2 θ

d2

dφ2
Φ = 0

⇒ sin2 θ

R

d

dr

(
r2
d

dr
R

)
+

sin θ

Θ

d

dθ

(
sin θ

d

dθ
Θ

)
= − 1

Φ

d2

dφ2
Φ.

(32)

We have two sides dependent on completely different independent variables and the two are equal. The only way
this is possible is if both are equal to a constant. Let us call this constant m2. Thus,

sin2 θ

R

d

dr

(
r2
d

dr
R

)
+

sin θ

Θ

d

dθ

(
sin θ

d

dθ
Θ

)
= − 1

Φ

d2

dφ2
Φ = m2. (33)
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Solution for Φ

It is relatively easier to solve for Φ, using

− 1

Φ

d2

dφ2
Φ = m2

⇒ d2

dφ2
Φ +m2Φ = 0.

(34)

This is the familiar equation of a harmonic oscillator (d2x/dt2 + ω2x = 0). Substituting Φ = Aekφ, we obtain

k2 +m2 = 0

⇒k = ±im.
(35)

Thus, solutions for Φ are of the form Ae±imφ. The general solution would thus, be a linear combination of the
possible solutions,

Φ(φ) = C1e
imφ + C2e

−imφ. (36)

Note : This is just for a single m. We will eventually have to sum over different m in order to obtain the final
general solution.

How does the solution look like? We can expand the exponentials using Euler’s identity (eimφ = cos(mφ) +
i sin(mφ)) to obtain an experession that looks as follows,

Φ(φ) = C ′1 cos(mφ) + C ′2 sin(mφ), (37)

which is a sinusoidal solution, but in the longitudinal direction. It is equivalent to wrapping a cosine or a sine
function around a circle. The periodicity of a simple cosine or sine is 2π. Hence, that of a cos(mφ) or sin(mφ)
is 2π/m, which means that if you rotate the function by 1/mth part of a circle, you’ll get the same thing. This
is shown in figure 4 which shows cos(mφ) being wrapped around a circle (0 6 φ 6 2π) for different m values.
Note that addition of a sine component will only change the phase and amplitude (rotate the plots and make the
maximum bigger or smaller), and not the shape of the functions.

Solution for Θ

Going back to (33),

sin2 θ

R

d

dr

(
r2
d

dr
R

)
+

sin θ

Θ

d

dθ

(
sin θ

d

dθ
Θ

)
= m2

⇒ 1

R

d

dr

(
r2
d

dr
R

)
=

1

sin θΘ

d

dθ

(
sin θ

d

dθ
Θ

)
− m2

sin2 θ
,

(38)

we again have two sides which are dependent on completely independent variables. For this to be true for any
arbitrary value of the variables, both sides need to equal a constant. Let us write this constant as −l(l + 1) (for
mathematical convenience later),

1

R

d

dr

(
r2
d

dr
R

)
= − 1

sin θΘ

d

dθ

(
sin θ

d

dθ
Θ

)
+

m2

sin2 θ
= l(l + 1). (39)

Now, let us solve for Θ as follows,

− 1

sin θΘ

d

dθ

(
sin θ

d

dθ
Θ

)
+

m2

sin2 θ
= l(l + 1)

⇒d2Θ

dθ2
+

cos θ

sin θ

dΘ

dθ
+

(
l(l + 1)− m2

sin2 θ

)
Θ = 0.

(40)
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Figure 4: Example of how cos(mφ) looks like wrapped around a circle. Note that m = 0 only represents a constant
= 1.

l m Pml (x) Pml (cos θ)
0 0 1 1
1 0 x cos θ

1 1
√

1− x2 sin θ
2 0 3x2 − 1 3 cos2 θ − 1

2 1 x
√

1− x2 cos θ sin θ
2 2 1− x2 sin2 θ

Table 2: List of first few associated Legendre polynomials (not normalised).

This looks “nice” but is still a bit complicated to solve. In order to solve this, we need to work with a new variable,
x = cos θ. Using chain rules, the derivatives now become

d

dθ
=
dx

dθ

d

dx
= − sin θ

d

dx
= −

√
1− x2 d

dx
,

d2

dθ2
=

d

dθ

(
−
√

1− x2 d
dx

)
=
dx

dθ

d

dx

(
−
√

1− x2 d
dx

)
= −

√
1− x2

(
−
√

1− x2 d
2

dx2
+

x√
1− x2

d

dx

)
= (1− x2)

d2

dx2
− x d

dx
.

(41)

Using the above expressions, (40) becomes,
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(1− x2)
d2Θ

dx2
− 2x

dΘ

dx
+

(
l(l + 1)− m2

1− x2
)

Θ = 0. (42)

This is a well-known differential equation called the “general Legendre equation”, whose solutions are the associated
Legendre polynomials,

Θ(θ) = Pml (x) = Pml (cos θ). (43)

The first few polynomials are listed in table 2. Note that l can take on any value greater than zero while
0 ≤ m ≤ l. For more details you can visit the Wikipedia page. Note that the general definition has both positive
and negative m. However, it can be shown that for real quantities, one need only consider m ≥ 0.

Figure 5: Plots of Pml (x) and Pml (cos θ) with respect to x and θ.

As one can see, in general, curves get more “squiggly” for a fixed m and higher l, and less “squiggly” for fixed l
and higher m. If one counts the number of times a single curve crosses the zero line, one can find a relation between
l,m and this number for a single curve (it’s equal to l −m). In addition, remembering that the vertical lines at
x = 0 or θ = π/2 represent the equator, one can also say something about the equatorial symmetry of the curve
(is it symmetric or anti-symmetric with respect to the equator?). It also depends on l − m. For a Pml which is
symmetric (antisymmetric) w.r.t equator, l −m =even (odd).

Spherical harmonics

We take a pause here to introduce a set of basis functions in 2D spherical coordinates (θ, φ). When we combine the
solutions for Θ(θ) and Φ(φ), we obtain functions that look like

Y ml (θ, φ) = Pml (cos θ)eimφ. (44)

These functions are called spherical harmonics with degree l and order m. How do they look like in physical space?
Remember that the solution for Φ is a sine or cosine function wrapped around a circle, while that for Θ, the solutions
are polynomials Pml (cos θ) which have a sort of sinusoidal shape. Multiplying the two gives interesting patterns
in 2D. This is shown in figure 6. The number of zeros in longitude is m, while the number of zeros (or nodes) in

9
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Figure 6: Structure of spherical harmonics. Each subfigure shows the solution for Φ(φ) = cos(mφ), Θ(θ) = Pml (cos θ)
and finally the product, Y ml (θ, φ).

longitude is given by l −m. Thus, larger the l, the larger is the possibility of having complex structures (larger
l −m). A function f(θ, φ) on a spherical surface can be written as,

f(θ, φ) =

∞∑
l=0

l∑
m=0

clmY
m
l (θ, φ). (45)

Since spherical harmonics are orthogonal,∫ 2π

0

∫ π

0

Y ml (θ, φ)Y m
′∗

l′ (θ, φ) sin θdθdφ =

√
2l + 1

4π

(l −m)!

(l +m)!
δll′δmm′ , (46)

one can readily obtain the coefficients clm as,

clm =

∫ 2π

0

∫ π

0

f(θ, φ)Y m∗l (θ, φ) sin θdθdφ. (47)

An example of such an expansion is shown in figure 7.

Solution for R

Having dealt with θ and φ directions, we now turn to the equation for R. Going back to (39), we get,

1

R

d

dr

(
r2
d

dr
R

)
= l(l + 1)

⇒r2 d
2R

dr2
+ 2r

dR

dr
− l(l + 1)R = 0.

(48)
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Figure 7: Example of a spherical harmonic expansion of a function f(θ, φ) on a spherical surface.

This is a special kind of differential equation called Euler-Cauchy equation. The way to solve this is by guessing a
solution that goes as R = Arα. Substituting this, we get

α(α− 1)rα + 2αrα − l(l + 1)rα = 0

⇒α2 + α− l(l + 1) = 0

⇒(α− l)(α+ l + 1) = 0

⇒α = l,−l − 1.

(49)

Thus, the general solution is,
R(r) = D1lr

l +D2lr
−l−1. (50)

We have two cases here:

Case I : Internal field

In the case of an internal source of field, the potential needs to be finite while r → ∞, we need D1l = 0 ∀ l and
thus,

R(r) = D2lr
−l−1. (51)

Combining the different solutions from (36),(43), and (51), and summing over all possible l and m, one obtains the
general solution for the potential V ,

V =

∞∑
l=1

l∑
m=0

D2lr
−l−1[C1e

imφ + C2e
−imφ]Pml (cos θ). (52)

Expanding the exponentials using Euler’s identity (eix = cos(x) + i sin(x)), one can write,

V =

∞∑
l=1

l∑
m=0

D2lr
−l−1[glm cos(mφ) + hlm sin(mφ)]Pml (cos θ). (53)

glm and hlm are called Gauss coefficients. We obtain this typically from observations of the radial magnetic
field at the surface (r = a). Thus, the surface expansion will not have any factors of radius r. This gives a
way to define the constant D2l = al+1. Lastly, we include an extra factor of a so that the measured radial field
component Br = −∂V/∂r does not have any extra factors and can be readily expanded from observations. Finally,
the expression for V becomes

VI = a

∞∑
l=1

l∑
m=0

(a
r

)l+1

[glm cos(mφ) + hlm sin(mφ)]Pml (cos θ). (54)

Case II : External field

In the case of an external source of field, the potential needs to be finite while r → 0, we need D2l = 0 ∀ l and thus,

R(r) = D1lr
l. (55)
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Following the same twisted logic in case of internal field, we obtain the final expression to be,

VE = a

∞∑
l=1

l∑
m=0

( r
a

)l
[glm cos(mφ) + hlm sin(mφ)]Pml (cos θ). (56)

Note that VI(a) = VE(a), as one would expect.

What do internal and external mean?

Remember that the terms internal and external only refer to where the source of the field is - is it below
the radius of interest, or above? For example, if you are continuing the field at the surface of a planet down
into the mantle, you would use equation (54) because the source of the field is below, in the core. Thus,
for downward or upward continuation of magnetic field, (54) is the expression that is widely used and is
commonly encountered in planetary science.
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