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Waves vs Modes

Waves are travelling, don’t care about boundaries till they reflect.
They are ‘local’ in nature.

Modes are aware of boundaries and are ‘global’ in nature.
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Types of waves in planetary fluid dynamics

Type of wave Restoring force(s)

Acoustic (p-modes) −∇p
Inertial −∇p− 2Ω× u
Surface/Internal gravity (f -/g-modes) ρ′g
Inertia-gravity or gravito-inertial −∇p− 2Ω× u+ ρ′g

Alfvén B · ∇B
Magnetoacoustic −∇p+B · ∇B
Magneto-Coriolis (MC) −∇p− 2Ω× u+B · ∇B
Magnetic, Archimedean, Coriolis (MAC) −2Ω× u+ ρ′g +B · ∇B
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Inertial Modes

∂u

∂t
= −∇p− 2Ω× u (1)

BC: u · n̂ = 0
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Inertial Modes

−iωu = −∇p− 2Ω× u (2)

BC: u · n̂ = 0

ω = 0 → Geostrophic mode (NOT an inertial mode)
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Inertial Modes

Properties:

Denoting the solutions using Qi, one can prove

|ω| ≤ 2Ω

Orthogonal:
∫
Q†

m ·QndV = δmn
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Inertial Modes

Solution depends on container

Can be solved analytically in a full sphere (Zhang et al., 2001), and

have the form Q(r, θ)ei(mϕ−ωt)

Discrete frequencies (unlike plane inertial waves)
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Modes in a sphere

In a sphere, the frequencies satisfy:(
1− ω2

4

)
d

dω
Plm(ω/2) =

m

2
Plm(ω/2) (3)

Simplified:

(lx+m)Plm(x) = (l +m)Pl−1,m(x) (4)

where, x = ω/2

Number of solutions = l−m− νlm, where νlm =

{
0, if l −m is even
1, if l −m is odd
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Modes in a sphere

us uϕ
(5, 2) mode
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Other examples

(3, 2) mode (5, 1) mode
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Internal shear layers

What happens when there are realistic boundary conditions?
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Internal shear layers

Hyperbolic equation

Normally require Cauchy BC, but we provide Dirichlet or Neumann

We don’t know, in advance, whether a solution even exists

Discrete ω
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Free slip : (3, 2)
uφ at φ= 0.0 ◦
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No slip : (3, 2)
uφ at φ= 0.0 ◦
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Free slip : (5, 2)
uφ at φ= 0.0 ◦
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No slip : (5, 2)
uφ at φ= 20.0 ◦
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Slow vs fast modes

−iωu = −∇p− 2Ω× u

|ω| ≪ 1

⇒ | −∇p− 2Ω× u| ≪ 1

⇒ modes satisfy geostrophy to a large extent
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“Rossby” modes
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Live example

Code available here:

https://github.com/AnkitBarik/inermodz
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https://github.com/AnkitBarik/inermodz


Rossby waves

Occur in planets/stars

Often a thin layer approximation is used

Mathematically, ur << uh
Solve same equation as before, but set ur = 0 from the beginning

Two ways of doing this
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Rossby waves : local way

Ω× u

=Ωk̂ × (uxx̂+ uyŷ)

=Ω(����sin θŷ + cos θẑ)

× (uxx̂+ uyŷ)
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Rossby waves : local way
Coriolis force

2Ω× u

=2Ω(y)(−uyx̂+ uxŷ)

−iωux − 2Ω(y)uy = −∂p
∂x

−iωuy + 2Ω(y)ux = −∂p
∂y

∂ux
∂x

+
∂uy
∂y

= 0

(5)
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Rossby waves : local way
Assuming 2D plane waves and cross-differentiating,

kyωux − 2Ω(y)kyuy − 2uy
dΩ

dy
= − ∂p

∂x∂y

kxωuy + 2Ω(y)kxux = − ∂p

∂y∂x

kxux + kyuy = 0

(6)

Eliminating pressure,

ω = − kx
k2x + k2y

2dΩ

dy
(7)

23 / 31



Rossby waves : local way

β-plane approximation:
2dΩ

dy
= β

ω = −β kx
k2x + k2y

(8)

Wave pattern always travels westward
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Rossby waves : local way

Group velocity

cgroup = β
k2x − k2y
k4

x̂+ 2β
kxky
k4

ŷ (9)

When, k2x > k2y (short waves), energy propagates eastward

When, k2y > k2x (long waves), energy propagates westward
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Rossby waves
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Rossby modes : global

Since ur = 0,

u = (∇× ψr̂)e−iωt

−iω(∇× ψr̂) + 2Ωẑ ×∇× ψr̂ = −∇p
Applying r̂ · ∇×,

−iω∇2
Hψ + 2Ω

∂ψ

∂ϕ
= 0
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Rossby modes : global

−iω∇2
Hψ + 2Ω

∂ψ

∂ϕ
= 0

ψ =
∑

ψlmYlm

ωlm

Ω
= − 2m

l(l + 1)
(10)
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Back to inertial modes

Recall equation (4)

(l(ω/2) +m)Plm(ω/2) = (l +m)Pl−1,m(ω/2) (11)

I can be proved that, when l −m = 1, ur = 0 and

ωlm

Ω
=

2

m+ 1
(12)

( Note that this (l,m) is independent of the ones used for Rossby waves
earlier )

Some inertial modes are Rossby waves, but not all Rossby waves are
inertial modes.
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Rossby waves and inertial modes

Live demo
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