Inertial and gravity waves

Ankit Barik

EPS Fluids 2023

Dec 05 2023

- Waves are travelling, don't care about boundaries till they reflect. They are 'local' in nature.
- Modes are aware of boundaries and are 'global' in nature.

Types of waves in planetary fluid dynamics

Type of wave	Restoring force(s)
Acoustic (<i>p</i> -modes) Inertial Surface/Internal gravity (<i>f</i> -/ <i>g</i> -modes) Inertia-gravity or gravito-inertial	$egin{aligned} & - abla p \ & - abla p - 2oldsymbol{\Omega} imes oldsymbol{u} \ & ho'oldsymbol{g} \ & - abla p - 2oldsymbol{\Omega} imes oldsymbol{u} + ho'oldsymbol{g} \end{aligned}$
Alfvén Magnetoacoustic Magneto-Coriolis (MC) Magnetic, Archimedean, Coriolis (MAC)	$egin{aligned} m{B} \cdot abla m{B} \ - abla p + m{B} \cdot abla m{B} \ - abla p - 2m{\Omega} imes m{u} + m{B} \cdot abla m{B} \ -2m{\Omega} imes m{u} + ho'm{g} + m{B} \cdot abla m{B} \end{aligned}$

Inertial Modes

$$\frac{\partial \boldsymbol{u}}{\partial t} = -\nabla p - 2\boldsymbol{\Omega} \times \boldsymbol{u}$$

(1)

Inertial Modes

$$\frac{\partial \boldsymbol{u}}{\partial t} = -\nabla p - 2\boldsymbol{\Omega} \times \boldsymbol{u} \tag{1}$$
BC: $\boldsymbol{u} \cdot \hat{\boldsymbol{n}} = \boldsymbol{0}$

Inertial Modes

$$-i\omega \boldsymbol{u} = -\nabla p - 2\boldsymbol{\Omega} \times \boldsymbol{u}$$
(2)
BC: $\boldsymbol{u} \cdot \hat{\boldsymbol{n}} = \boldsymbol{0}$

$$-i\omega \boldsymbol{u} = -\nabla p - 2\boldsymbol{\Omega} \times \boldsymbol{u}$$
(2)
BC: $\boldsymbol{u} \cdot \hat{\boldsymbol{n}} = \boldsymbol{0}$

 $\omega = 0 \rightarrow \text{Geostrophic mode (NOT an inertial mode)}$

Properties:

Denoting the solutions using $oldsymbol{Q}_i$, one can prove

- $|\omega| \leq 2\Omega$
- Orthogonal: $\int oldsymbol{Q}_m^\dagger \cdot oldsymbol{Q}_n dV = \delta_{mn}$

- Solution depends on container
- Can be solved analytically in a full sphere (Zhang et al., 2001), and
- have the form $oldsymbol{Q}(r, heta)e^{\mathrm{i}(m\phi-\omega t)}$
- Discrete frequencies (unlike plane inertial waves)

Modes in a sphere

In a sphere, the frequencies satisfy:

$$\left(1 - \frac{\omega^2}{4}\right) \frac{d}{d\omega} P_{lm}(\omega/2) = \frac{m}{2} P_{lm}(\omega/2) \tag{6}$$

Simplified:

$$(lx+m)P_{lm}(x) = (l+m)P_{l-1,m}(x) \tag{4}$$
 where, $x=\omega/2$

Number of solutions $= l - m - \nu_{lm}$, where $\nu_{lm} = \begin{cases} 0, & \text{if } l - m \text{ is even} \\ 1, & \text{if } l - m \text{ is odd} \end{cases}$

Modes in a sphere

Other examples

What happens when there are realistic boundary conditions?

- Hyperbolic equation
- Normally require Cauchy BC, but we provide Dirichlet or Neumann
- We don't know, in advance, whether a solution even exists
- Discrete ω

Free slip : (3,2)

No slip : (3, 2)

Free slip : (5,2)

No slip : (5, 2)

Slow vs fast modes

$$-\mathrm{i}\omega \boldsymbol{u} = -\nabla p - 2\boldsymbol{\Omega} imes \boldsymbol{u}$$

Slow vs fast modes

$$-\mathrm{i}\omegaoldsymbol{u} = -
abla p - 2oldsymbol{\Omega} imes oldsymbol{u}$$

$$\begin{aligned} |\omega| \ll 1\\ \Rightarrow |-\nabla p - 2\boldsymbol{\Omega} \times \boldsymbol{u}| \ll 1 \end{aligned}$$

 \Rightarrow modes satisfy geostrophy to a large extent

"Rossby" modes

Live example

Code available here:

https://github.com/AnkitBarik/inermodz

• Occur in planets/stars

- Occur in planets/stars
- Often a thin layer approximation is used

- Occur in planets/stars
- Often a thin layer approximation is used
- Mathematically, $u_r << u_h$

- Occur in planets/stars
- Often a thin layer approximation is used
- Mathematically, $u_r << u_h$
- Solve same equation as before, but set $u_r = 0$ from the beginning

- Occur in planets/stars
- Often a thin layer approximation is used
- Mathematically, $u_r << u_h$
- Solve same equation as before, but set $u_r = 0$ from the beginning
- Two ways of doing this

Coriolis force

$$2\boldsymbol{\Omega} \times \boldsymbol{u} \\ = 2\Omega(y)(-u_y \hat{\boldsymbol{x}} + u_x \hat{\boldsymbol{y}})$$

$$-i\omega u_x - 2\Omega(y)u_y = -\frac{\partial p}{\partial x}$$
$$-i\omega u_y + 2\Omega(y)u_x = -\frac{\partial p}{\partial y}$$
$$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} = 0$$

(5)

Assuming 2D plane waves and cross-differentiating,

$$k_y \omega u_x - 2\Omega(y)k_y u_y - 2u_y \frac{d\Omega}{dy} = -\frac{\partial p}{\partial x \partial y}$$

 $k_x \omega u_y + 2\Omega(y)k_x u_x = -\frac{\partial p}{\partial y \partial x}$
 $k_x u_x + k_y u_y = 0$

Eliminating pressure,

$$\omega = -\frac{k_x}{k_x^2 + k_y^2} \frac{2d\Omega}{dy}$$

(6)

$$eta$$
-plane approximation: $rac{2d\Omega}{dy}=eta$ $\omega=-etarac{k_x}{k_x^2+k_y^2}$

Wave pattern always travels westward

(8)

Group velocity

$$c_{ ext{group}} = eta rac{k_x^2 - k_y^2}{k^4} \hat{oldsymbol{x}} + 2eta rac{k_x k_y}{k^4} \hat{oldsymbol{y}}$$

When, k²_x > k²_y (short waves), energy propagates eastward
When, k²_y > k²_x (long waves), energy propagates westward

(9)

Rossby waves

Rossby modes : global

Since $u_r = 0$,

$$oldsymbol{u} = (
abla imes \psi \hat{oldsymbol{r}}) e^{-\mathrm{i}\omega t}$$

 $-\mathrm{i}\omega(
abla imes\psi\hat{m{r}})+2\Omega\hat{m{z}} imes
abla imes\psi\hat{m{r}}=abla p$ Applying $\hat{m{r}}\cdot
abla imes$,

$$-\mathrm{i}\omega\nabla_H^2\psi + 2\Omega\frac{\partial\psi}{\partial\phi} = 0$$

Rossby modes : global

$$-\mathrm{i}\omega
abla_{H}^{2}\psi + 2\Omega \frac{\partial \psi}{\partial \phi} = 0$$
 $\psi = \sum \psi_{lm} Y_{lm}$

$$\frac{\omega_{lm}}{\Omega} = -\frac{2m}{l(l+1)}$$

Back to inertial modes

Recall equation (4)

$$(l(\omega/2) + m)P_{lm}(\omega/2) = (l+m)P_{l-1,m}(\omega/2)$$
(11)

I can be proved that, when l-m=1, $u_r=0$ and

$$\frac{\omega_{lm}}{\Omega} = \frac{2}{m+1} \tag{12}$$

(Note that this $\left(l,m\right)$ is independent of the ones used for Rossby waves earlier)

Back to inertial modes

Recall equation (4)

$$(l(\omega/2) + m)P_{lm}(\omega/2) = (l+m)P_{l-1,m}(\omega/2)$$
(11)

I can be proved that, when l-m=1, $u_r=0$ and

$$\frac{\omega_{lm}}{\Omega} = \frac{2}{m+1} \tag{12}$$

(Note that this $\left(l,m\right)$ is independent of the ones used for Rossby waves earlier)

Some inertial modes are Rossby waves, but not all Rossby waves are inertial modes.

Rossby waves and inertial modes

Live demo

Zhang, K., Earnshaw, P., Liao, X., and Busse, F. H. (2001). On inertial waves in a rotating fluid sphere. *Journal of Fluid Mechanics*, 437(1):103–119.