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What is turbulence?

Physics World “Millennium Issue” - Ten
great unsolved problems in physics:

1. Quantum gravity

2. Understanding the
nucleus

3. Fusion energy

4. Climate change

5. Turbulence

6. Glassy materials

7. High-temperature
superconductivity

8. Solar magnetism

9. Complexity

10. Consciousness
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What is turbulence?

Non-linear

Open systems

Many degrees of freedom

Highly irregular in space and time

Often leads to a statistically quasi-stationary state far away from equilibrium

Elements of chaos - butterfly effect
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Navier-Stokes equation(s)

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u

∇ · u = 0
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Reynolds number

Re =
UL

ν

Importance of viscosity:

Low Re ⇒ viscous laminar flow
High Re ⇒ turbulent flow

Re > Rec determines transition to turbulence

Rec depends on the system, Rec ≈ 10000 for pipe flows

|u · ∇u|
|ν∇2u|

∼ U2/L

νU/L2
= Re
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Navier-Stokes equation(s)

10 / 53
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Section 1

Analytical approach
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Navier-Stokes equation(s)

∂u

∂t
+ u · ∇u = −∇(p/ρ) + ν∇2u

∇ · u = 0
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Non-locality

Take the divergence of Navier-Stokes and use ∇ · u = 0,

∇2(p/ρ) = −∇ · (u · ∇u)

Inverting for p/ρ gives,

p(r)/ρ =
1

4π

∫
∇ · (u · ∇u)

|r − r′|
d3r′

where we have used the Green’s function solution to Poisson’s equation
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Non-locality

Pressure depends on the whole velocity field over the domain, which in turn determines
the velocity field.

∂u

∂t
+ u · ∇u = −∇

[
1

4π

∫
∇ · (u · ∇u)

|r − r′|
d3r′

]
+ ν∇2u

Non-linear (because of u · ∇u) as well as non-local (because of the integral).
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Section 2

Statistical approach
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Statistical approach

Average over ensembles (several realisations of the same event) or time

16 / 53



Closure problem

Hierarchy of equations of the form:

∂

∂t
(statistical property of u) = Function (other properties of u)

Always more number of unknowns than equations.
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Reynolds Averaged Navier Stokes (RANS)

∂ui

∂t
+
∑
j

uj
∂ui

∂xj

= −1

ρ

∂p

∂xi

+ ν
∑
j

∂2ui

∂x2
j

Split into mean and fluctuating parts:

ui = ⟨ui⟩+ u′
i

p = ⟨p⟩+ p′
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Reynolds Averaged Navier Stokes (RANS)

Following Reynolds rules (Reynolds, 1883),

⟨u′⟩ = 0; ⟨c ⟨u⟩⟩ = c ⟨u⟩
⟨u+ v⟩ = ⟨u⟩+ ⟨v⟩
⟨⟨u⟩ v⟩ = ⟨u⟩ ⟨v⟩〈
∂u

∂t

〉
=

∂ ⟨u⟩
∂t
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Reynolds Averaged Navier Stokes (RANS)

Obtain equation for mean flow

∂ ⟨ui⟩
∂t

+
∑
j

〈
uj

∂ui

∂xj

〉
= −1

ρ

∂ ⟨p⟩
∂xi

+ ν
∑
j

∂2 ⟨ui⟩
∂x2

j

−
∑
j

∂

∂xj

〈
u′
iu

′
j

〉

20 / 53



Reynolds Averaged Navier Stokes (RANS)

Obtain equation for mean flow

∂ ⟨ui⟩
∂t

+
∑
j

〈
uj
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ρ
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Closure problem

∂

∂t

〈
u′
iu

′
j

〉
= Term containing u′

iu
′
ju

′
k + . . .

and so on.
Must close the system with some model.
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Eddy viscosity

The first closure model attempt was by Joseph Valentin Boussinesq → eddy viscosity.
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Eddies
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Eddies
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Eddy viscosity

−
〈
u′
iu

′
j

〉
= νt

∂ ⟨ui⟩
∂xj

Navier-Stokes:

∂ ⟨ui⟩
∂t

+
∑
j

〈
uj

∂ui

∂xj

〉
= −1

ρ

∂ ⟨p⟩
∂xi

+ ν
∑
j

∂2 ⟨ui⟩
∂x2

j

−
∑
j

∂

∂xj

〈
u′
iu

′
j

〉
becomes,

∂ ⟨ui⟩
∂t

+
∑
j

〈
uj

∂ui

∂xj

〉
= −1

ρ

∂ ⟨p⟩
∂xi

+ (ν + νt)
∑
j

∂2 ⟨ui⟩
∂x2

j
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Turbulent dissipation

As ν decreases, the eddies get smaller and gradients in velocity get larger, adding to
enhanced dissipation. Thus, dissipation in the low viscosity limit stays finite.

Perform u· (Navier-Stokes) and integrate over volume.

d

dt

∫
1

2
|u|2dV = −ν

∫
|ω|2dV

where, ω = ∇× u =vorticity.
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Zeroth law

Zeroth law states that:

lim
ν→0

ν

∫
|ω|2dV ̸= 0

As ν → 0 or Re → ∞, dissipation becomes independent of viscosity

Euler (no-viscosity) and the Navier-Stokes equations (with viscosity) are
fundamentally physically different
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Turbulent diffusion

Turbulence creates small scale motions and enhances diffusion

Think of a cookie batter - you can either stir it (turbulent diffusion), or let it
diffuse and mix by itself (molecular diffusion)

Math similar to the previous analysis of turbulent or eddy viscosity
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Turbulence - necessary evil

Absolutely necessary to enhance diffusion in everyday life

Necessary for astrophysical processes (e.g.: transport of angular momentum,
generation of magnetic fields)

Dissipates energy and produces heat in systems

Produces some other challenges:

Design of airplanes, cars, ships etc.
Weather prediction
Fusion energy
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Section 3

Enter Kolmogorov
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Length scales
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Length scales

Turbulence consists of a whole continuum of length scales (l) or wavenumbers
(k = 2π/l)

The system is driven at a large scale (L)

Dissipation is strongest at the smallest scale (η)

Energy in = Energy out

How does energy transport occur?
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The Richardson cascade

Large scale driving

E
n
er

g
y 

tr
an

sf
er

 t
o 

sm
al

l 
sc

al
es

Dissipation at smallest scale

“Big whirls have little whirls that feed on their
velocity,
and little whirls have lesser whirls and so on to
viscosity.”
- Lewis Fry Richardson

(rewording Jonathan Swift: “Great fleas have little fleas upon

their backs to bite ’em, And little fleas have lesser fleas, and

so ad infinitum.” )
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The Richardson cascade
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The Richardson cascade

Flux of energy from largest scale (L) to smallest scale (η) is a multi-step process

Energy is first passed from a scale l0 to a smaller scale l1 to an even smaller scale
l2 and so on, through inertia (that u · ∇u thingy)

The above goes on till the smallest scale (η) is reached when viscosity becomes
very important

Energy transport is “local” in length-scales or wavenumbers
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The Richardson cascade

Drive range

Inertial range

Dissipation range

Energy cascade
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Kolmogorov microscales

The zeroth law implies in the limit Re → ∞, rate of dissipation of kinetic energy
per unit mass, ϵ is independent of viscosity and also, the smallest scales where the
dissipation takes place.

Since energy “injected” into large scales must equal energy dissipated, ϵ is purely a
function of U and L (also called the “integral scales” or “injection scales”).

ϵ has units of (energy/mass/time) = m2/s3, dimensional analysis gives us,

ϵ ∼ U3

L
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Kolmogorov microscales

The scale at which dissipation takes place (η, unit m) depends on rate of
dissipation (units m2/s3) and viscosity (units m2/s). Dimensional analysis gives us,

η ∼
(
ν3

ϵ

)1/4

= Re−3/4L

Similar analysis also gives us the velocity at the smallest scale,

uη ∼ (νϵ)1/4 = Re−1/4U

These are known as the Kolmogorov microscales after A. N. Kolmogorov.
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Kolmogorov microscales

Note that
uηη

ν
∼ 1 ⇒ viscosity is equally important as inertia

Ratio between smallest and largest scales,

η

L
∼ Re−3/4

Thus, in order to resolve the smallest scales in a simulation in 3D, number of grid
points varies as (Re3/4)3 = Re9/4

In addition, keeping up with the length scale, the time resolution also varies as
Re3/4

Thus, total computational cost increases as Re9/4Re3/4 = Re3, limiting simulations
to not too high Reynolds numbers.
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The Kolmogorov 2/3 law

Flux of energy is constant through the cascade, thus eddies of any length scale (l)
must satisfy

ϵ ∼ u3
l

l

assuming all eddies are equally “space-filling”.

Can be re-written as
u2
l ∼ (ϵl)2/3
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The Kolmogorov-Obukhov 5/3 law

(Kolmogorov, 1941a,b; Obukhov, 1941)

Consider energy E(k) carried by flow between wavenumbers k and k + dk∫ ∞

0

E(k)dk = E =
1

2V

∫
|u|2dV

E(k) = ∂E

∂k

Units of E(k) = m2/s2/(1/m) = m3/s2
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The Kolmogorov-Obukhov 5/3 law

Assumptions:

Homogeneous and isotropic turbulence

Scale invariance ⇒ “ there exists a range of scales (the inertial range) in which
effects of viscosity, boundary conditions, and large-scale structures are not
important” (Meneveau and Katz, 2000)
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The Kolmogorov-Obukhov 5/3 law

E(k) (units m3/s2) is a function of ϵ (units m2/s3) and k (unit 1/m). Dimensional
analysis gives,

E(k) = αϵ2/3k−5/3

This is the most famous result in turbulence, called the “5/3” law, sometimes also
called “K41 theory”.
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The Kolmogorov-Obukhov 5/3 law

Drive range

Inertial range

Dissipation range

Energy cascade
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2D Turbulence

Important for geophysical/planetary fluid dynamics

Leads to both forward and inverse cascades
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2D Turbulence

Invariant quantities:

Energy: E =
1

2

∫
v
|u|2dv

Enstrophy: Ω =
∫
v
|ω|2dv
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Cascades in 2D turbulence : triadic interactions and resonances

∂u

∂t
= −u · ∇u+ . . .

If the LHS has a wavenumber k3, e
ik3x and the RHS has two wavenumbers k1 and

k2, then interactions such that k3 = k1 ± k2 will feed energy into k3.

If u consists of waves (say Rossby waves) of the form ei(kx−ωt), then a resonant
excitation can occur if k3 = k1 ± k2 and ω3 = ω1 ± ω2.
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Cascades in 2D turbulence

Energy cascade

Enstrophy cascade
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Challenges and open questions

Effects of inhomogeneity, anisotropy, compressiblity

Derivation 5/3 law from Navier-Stokes

First principle simulations of complex problems not feasible

Often, one is interested in only large scales - how do we get rid of small scales in
simulations? e.g.: Large Eddy Simulations (LES) + sub-grid scale models.
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Acknowledgments and further reading

Books

Turbulence in rotating, stratified and electrically conducting fluids - P. A. Davidson
A First Course in Turbulence - Tennekes and Lumley
Turbulence: The Legacy of A. N. Kolmogorov - Uriel Frisch
Turbulent Flows - Stephen B. Pope

Other stuff

3Blue1Brown video: https://youtu.be/_UoTTq651dE
Presentation by Frank Jenko for Les Houches winter school:
http://www.ens-lyon.fr/PHYSIQUE/Equipe2/LesHouches15/Talks_files/Jenko-1.pdf

Wiki on RANS: https://en.wikipedia.org/wiki/Reynolds-averaged_Navier%E2%80%93Stokes_equations
Wiki on Turbulence modelling: https://en.wikipedia.org/wiki/Turbulence_modeling
Notes on Kolmogorov microscales: https://my.eng.utah.edu/~mcmurtry/Turbulence/turblt.pdf
Notes on turbulence: https://www.uio.no/studier/emner/matnat/math/MEK4300/v13/undervisningsmateriale/tb_16january2013.pdf
Notes on turbulence: https://www.krellinst.org/doecsgf/conf/2011/pres/moin_notes.pdf
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Image credits

Tap water turbulence: NWRA ( https://www.cora.nwra.com/~werne/eos/text/turbulence.html )

Wingtip vortex: NASA Langley Research Center (https://en.wikipedia.org/wiki/Wingtip_vortices#/media/File:Airplane_vortex_edit.jpg )

Convection simulation: Nathanaël Schaeffer (https://figshare.com/articles/Temperature_field_in_the_equatorial_plane_of_the_Earth_s_
core_from_a_high_resolution_numerical_simulation/3502370)

Solar wind on Mars: NASA Maven (https://youtu.be/dOlljDQURgo)

Horsehead nebula: NASA JPL (https://www.jpl.nasa.gov/spaceimages/index.php?search=horsehead)

Bacterial suspension figure: Wensink et al. (2012)

Laser visualisation: 3Blue1Brown (https://youtu.be/_UoTTq651dE)
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