Laminar flow

Ankit Barik

EPS Fluids

Oct 26, 2023

Recap : non-dimensionalized Navier-Stokes

$$
\frac{L}{UT}\frac{\partial \boldsymbol{u}_*}{\partial t_*} + \boldsymbol{u}_*\cdot\nabla \boldsymbol{u}_* = -\nabla p_* + \frac{1}{Fr}\hat{\boldsymbol{z}} + \frac{1}{Ro}\hat{\boldsymbol{\Omega}}\times \boldsymbol{u}_* + \frac{1}{Re}\nabla^2 \boldsymbol{u}_*
$$

Recap : non-dimensionalized Navier-Stokes, $Ro \gg 1$

$$
\frac{L}{UT}\frac{\partial \boldsymbol{u}_*}{\partial t_*} + \boldsymbol{u}_* \cdot \nabla \boldsymbol{u}_* = -\nabla p_* + \frac{1}{Fr}\hat{\boldsymbol{z}} + \frac{1}{Re}\nabla^2 \boldsymbol{u}_*
$$

Low Re flows

\bullet When $Re \ll 1$, viscous forces dominate and the flow is 'laminar'

• When $Re \ll 1$, viscous forces dominate and the flow is 'laminar' \bullet We consider flows where rotation can be neglected $(Ro \gg 1)$

• When $Re \ll 1$, viscous forces dominate and the flow is 'laminar' $\bullet\,$ We consider flows where rotation can be neglected $(Ro\gg 1)$ \bullet The absence of $u\cdot \nabla u$ term allows for analytical solutions

"Dynamic" pressure

$$
\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \nabla p + \boldsymbol{g} + \nu \nabla^2 \boldsymbol{u}
$$

"Dynamic" pressure

$$
\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \nabla p + \boldsymbol{g} + \nu \nabla^2 \boldsymbol{u}
$$

$$
0=-\frac{1}{\rho}\nabla p_s+\boldsymbol{g}
$$

"Dynamic" pressure

$$
\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \nabla p + \boldsymbol{g} + \nu \nabla^2 \boldsymbol{u}
$$

$$
0=-\frac{1}{\rho}\nabla p_s+\boldsymbol{g}
$$

Subtracting,

$$
\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \nabla p_d + \nu \nabla^2 \boldsymbol{u}
$$

 $p_d \rightarrow$ dynamic pressure

What do you need for laminar flow?

 $Re =$ UL ν

Laminar flows

- Parallel streamlines
- Time reversible
- **Looks** "frozen in time" or glass-like appearance

Video 1 : <https://youtu.be/K9coK-Le6i0?t=247> Video 2 : <https://youtu.be/57IMufyoCnQ?t=202>

Useful?

Cleanrooms!

Driven by top plate moving at velocity U in x -direction and a pressure gradient ∇p

"Fully developed flow" \rightarrow Far away from edges and steady-state $\frac{\hat{O}}{\Omega}$ $\frac{\partial}{\partial t} = 0$

2D nature of the problem dictates : $\frac{\partial}{\partial \theta}$ $\frac{\partial}{\partial z} = 0$ Mass continuity:

$$
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
$$

Mass continuity:

$$
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
$$

Mass continuity:

$$
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
$$

Flow is invariant along the x -direction : $\frac{\partial u}{\partial x}$ $\frac{\partial}{\partial x} = 0$

Mass continuity:

$$
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
$$

Flow is invariant along the x -direction : $\frac{\partial u}{\partial x}$ $\frac{\partial}{\partial x} = 0$ Thus, $\frac{\partial v}{\partial x}$ $\frac{\partial}{\partial y} = 0$

Mass continuity:

$$
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
$$

Flow is invariant along the x -direction : $\frac{\partial u}{\partial x}$ $\frac{\partial}{\partial x} = 0$ Thus, $\frac{\partial v}{\partial x}$ $\frac{\partial}{\partial y} = 0$ Since $v = 0$ at $y = 0$, $v = 0$ everywhere.

Navier-Stokes get reduced to:

$$
0 = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \frac{d^2 u}{dy^2}
$$

$$
0 = -\frac{1}{\rho} \frac{\partial p}{\partial y}
$$

Second equation implies $p \equiv p(x)$.

(1)

First equation:

$$
0 = -\frac{dp}{dx} + \rho \nu \frac{d^2 u}{dy^2}
$$

$$
\mu \frac{d^2 u}{dy^2} = \frac{dp}{dx}
$$

(2)

First equation:

$$
0 = -\frac{dp}{dx} + \rho \nu \frac{d^2 u}{dy^2}
$$

$$
\mu \frac{d^2 u}{dy^2} = \frac{dp}{dx}
$$

Integrating twice,

$$
\mu u = \frac{dp}{dx}\frac{y^2}{2} + Ay + B\tag{3}
$$

(2)

$$
\mu u = \frac{dp}{dx}\frac{y^2}{2} + Ay + B
$$

$$
u(y = 0) = 0 \Rightarrow B = 0
$$

$$
u(y = L) = U \Rightarrow A = \frac{1}{L} \left(\mu U - \frac{dp}{dx} \frac{L^2}{2} \right) = \frac{\mu U}{L} - \frac{dp}{dx} \frac{L}{2}
$$

We get,

$$
u = \frac{U}{L}y + \frac{y}{2}\frac{dp}{dx}(y - L)
$$
 (4)

16 / 32

Special cases

Plane Couette flow: $\frac{dp}{dx}$ $\frac{d}{dx} = 0$

$$
u = \frac{U}{L}y
$$

 $y \hspace{2.6cm} (5)$

Special cases

Plane Couette flow: $\frac{dp}{dx}$ $\frac{d}{dx} = 0$

$$
u = \frac{U}{L}y
$$

$$
y \hspace{3.5cm} (5)
$$

Plane Poiseuille flow: $U = 0$

$$
u = \frac{y}{2} \frac{dp}{dx} (y - L) \tag{6}
$$

How does the flow look like?

Taylor-Couette flow

Also called Circular Couette flow or Cylindrical Couette flow

Taylor-Couette flow

Cylindrical coordinate system: (s, ϕ, z)

- s : along cylindrical radius
- ϕ : azimuth
- z : along the axis of the cylinder

Symmetry

$$
\frac{\partial}{\partial \phi} = 0 \text{ and } \frac{\partial}{\partial z} = 0
$$

Mass conservation

$$
\frac{1}{s}\frac{d}{ds}(su_s) = 0 \Rightarrow su_s = \text{constant} \tag{7}
$$

Mass conservation

$$
\frac{1}{s}\frac{d}{ds}(su_s) = 0 \Rightarrow su_s = \text{constant} \tag{7}
$$

 $u_s(s = r_1) = 0 \Rightarrow u_s = 0$ everywhere.

s-direction:

$$
-\frac{u_{\phi}^2}{s}=-\frac{1}{\rho}\frac{dp}{ds}
$$

(8)

s-direction:

$$
-\frac{u_{\phi}^2}{s} = -\frac{1}{\rho}\frac{dp}{ds}
$$

Pressure increases radially outward because of the centrifugal force.

(8)

ϕ-direction:

$$
\mu(\nabla^2 \mathbf{u})_{\phi} = 0
$$

$$
\Rightarrow \mu \left[\frac{1}{s} \frac{d}{ds} \left(s \frac{d}{ds} u_{\phi} \right) - \frac{u_{\phi}}{s^2} \right] = 0
$$

$$
\Rightarrow \frac{d^2 u_{\phi}}{ds^2} + \frac{1}{s} \frac{du_{\phi}}{ds} - \frac{u_{\phi}}{s^2} = 0
$$

(9)

ϕ-direction:

$$
\mu(\nabla^2 \mathbf{u})_{\phi} = 0
$$

$$
\Rightarrow \mu \left[\frac{1}{s} \frac{d}{ds} \left(s \frac{d}{ds} u_{\phi} \right) - \frac{u_{\phi}}{s^2} \right] = 0
$$

$$
\Rightarrow \frac{d^2 u_{\phi}}{ds^2} + \frac{1}{s} \frac{du_{\phi}}{ds} - \frac{u_{\phi}}{s^2} = 0
$$

Assume an ansatz $u_\phi=s^m$, obtain the indicial equation:

$$
m^2 - 1 = 0 \Rightarrow m = \pm 1
$$

24 / 32

(9)

Thus,

$$
u_{\phi} = As + B/s \tag{10}
$$

Thus,

$$
u_{\phi} = As + B/s \tag{10}
$$

Using boundary conditions, $u_{\phi}(r_1) = \overline{\Omega}_1 r_1$ and $u_{\phi}(r_2) = \Omega_2 r_2$,

$$
A = \frac{\Omega_2 r_2^2 - \Omega_1 r_1^2}{r_2^2 - r_1^2}
$$

$$
B = \frac{(\Omega_1 - \Omega_2)r_1^2 r_2^2}{r_2^2 - r_1^2}
$$

(11)

Streamlines

How to the flow streamlines look like?

Pipe flow

- Flow through a pipe along its axis. ٠
- Using cylindrical coordinates again, x along the pipe plays the role of z now. ٠
- Only non-zero component of velocity is in the x -direction. ٠

s-direction:

s-direction:

 $0 = -$ ∂p $\frac{\partial P}{\partial s}$ (12)

Pressure is a function of x alone.

x-direction:

$$
0 = -\frac{dp}{dx} + \frac{\mu}{s} \frac{d}{ds} \left(s \frac{du_x}{ds} \right)
$$

(13)

 x -direction:

$$
0 = -\frac{dp}{dx} + \frac{\mu}{s} \frac{d}{ds} \left(s \frac{du_x}{ds} \right) \tag{13}
$$

First term is a function of x, second is a function of $s \Rightarrow$ both must be constant \rightarrow pressure varies linearly along the pipe.

$$
0 = -\frac{dp}{dx} + \frac{\mu}{s} \frac{d}{ds} \left(s \frac{du_x}{ds} \right)
$$

$$
0 = -\frac{dp}{dx} + \frac{\mu}{s} \frac{d}{ds} \left(s \frac{du_x}{ds} \right)
$$

Integrating twice, we get,

$$
u_x = \frac{s^2}{4\mu} \frac{dp}{dx} + A \ln s + B \tag{14}
$$

$$
0 = -\frac{dp}{dx} + \frac{\mu}{s} \frac{d}{ds} \left(s \frac{du_x}{ds} \right)
$$

Integrating twice, we get,

$$
u_x = \frac{s^2}{4\mu} \frac{dp}{dx} + A \ln s + B \tag{14}
$$

Since u_x has to be finite at the axis, $A = 0$. Using $u_x = 0$ at $s = a$, where a is the radius of the pipe, we get, $B=-\frac{1}{2}$ \bar{a}^2 4μ $\,dp$ $rac{dP}{dx}$.

$$
u_x = \frac{s^2 - a^2}{4\mu} \frac{dp}{dx} \tag{15}
$$

How do the flow vectors look like?