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Recap : non-dimensionalized Navier-Stokes
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Recap : non-dimensionalized Navier-Stokes, Ro ≫ 1
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Low Re flows

When Re ≪ 1, viscous forces dominate and the flow is ‘laminar’

We consider flows where rotation can be neglected (Ro ≫ 1)

The absence of u · ∇u term allows for analytical solutions
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“Dynamic” pressure

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ g + ν∇2u

0 = −1

ρ
∇ps + g

Subtracting,

∂u

∂t
+ u · ∇u = −1

ρ
∇pd + ν∇2u

pd → dynamic pressure
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What do you need for laminar flow?

Re =
UL

ν
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Laminar flows

Parallel streamlines

Time reversible

Looks “frozen in time” or glass-like appearance
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Some cool videos

Video 1 : https://youtu.be/K9coK-Le6i0?t=247
Video 2 : https://youtu.be/57IMufyoCnQ?t=202
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Useful?

Cleanrooms!
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Parallel plates

Driven by top plate moving at velocity U in x-direction and a pressure
gradient ∇p
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Parallel plates

“Fully developed flow” → Far away from edges and steady-state
∂

∂t
= 0
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Parallel plates

2D nature of the problem dictates :
∂

∂z
= 0

Mass continuity:

∂u

∂x
+

∂v

∂y
= 0
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Parallel plates

Mass continuity:

∂u

∂x
+

∂v

∂y
= 0

Flow is invariant along the x-direction :
∂u

∂x
= 0

Thus,
∂v

∂y
= 0

Since v = 0 at y = 0, v = 0 everywhere.
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Parallel plates

Navier-Stokes get reduced to:

0 = −1

ρ

∂p

∂x
+ ν

d2u

dy2

0 = −1

ρ

∂p

∂y

(1)

Second equation implies p ≡ p(x) .
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Parallel plates

First equation:

0 = −dp

dx
+ ρν

d2u

dy2

µ
d2u

dy2
=

dp

dx

(2)

Integrating twice,

µu =
dp

dx

y2

2
+ Ay +B (3)
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Parallel plates

µu =
dp

dx

y2

2
+ Ay +B

u(y = 0) = 0 ⇒ B = 0

u(y = L) = U ⇒ A =
1

L

(
µU − dp

dx

L2

2

)
=

µU

L
− dp

dx

L

2
We get,

u =
U

L
y +

y

2

dp

dx
(y − L) (4)
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Special cases

Plane Couette flow:
dp

dx
= 0

u =
U

L
y (5)

Plane Poiseuille flow: U = 0

u =
y

2

dp

dx
(y − L) (6)

17 / 32



Special cases

Plane Couette flow:
dp

dx
= 0

u =
U

L
y (5)

Plane Poiseuille flow: U = 0

u =
y

2

dp

dx
(y − L) (6)

17 / 32



Flow vectors

How does the flow look like?
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Taylor-Couette flow

Also called Circular Couette flow or Cylindrical Couette flow
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Taylor-Couette flow

Cylindrical coordinate system:
(s, ϕ, z)
s : along cylindrical radius
ϕ : azimuth
z : along the axis of the cylinder
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Symmetry

∂

∂ϕ
= 0 and

∂

∂z
= 0
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Mass conservation

1

s

d

ds
(sus) = 0 ⇒ sus = constant (7)

us(s = r1) = 0 ⇒ us = 0 everywhere.
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Equations of motion

s-direction:

−
u2ϕ
s

= −1

ρ

dp

ds
(8)

Pressure increases radially outward because of the centrifugal force.
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Equations of motion

ϕ-direction:

µ(∇2u)ϕ = 0

⇒ µ

[
1

s

d

ds

(
s
d

ds
uϕ

)
− uϕ

s2

]
= 0

⇒ d2uϕ
ds2

+
1

s

duϕ
ds

− uϕ
s2

= 0

(9)

Assume an ansatz uϕ = sm , obtain the indicial equation:

m2 − 1 = 0 ⇒ m = ±1
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Equations of motion

Thus,

uϕ = As+B/s (10)

Using boundary conditions, uϕ(r1) = Ω1r1 and uϕ(r2) = Ω2r2,

A =
Ω2r

2
2 − Ω1r

2
1

r22 − r21

B =
(Ω1 − Ω2)r

2
1r

2
2

r22 − r21

(11)
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Streamlines

How to the flow streamlines look like?

26 / 32



Pipe flow

Flow through a pipe along its axis.

Using cylindrical coordinates again, x along the pipe plays the role of z now.

Only non-zero component of velocity is in the x-direction.
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Equations of motion

s-direction:

0 = −∂p

∂s
(12)

Pressure is a function of x alone.
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Equations of motion

x-direction:

0 = −dp

dx
+

µ

s

d

ds

(
s
dux
ds

)
(13)

First term is a function of x, second is a function of s ⇒ both must be
constant → pressure varies linearly along the pipe.
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Equations of motion

0 = −dp

dx
+

µ

s

d

ds

(
s
dux
ds

)

Integrating twice, we get,

ux =
s2

4µ

dp

dx
+ A ln s+B (14)

Since ux has to be finite at the axis, A = 0. Using ux = 0 at s = a,

where a is the radius of the pipe, we get, B = − a2

4µ

dp

dx
.
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Equations of motion

ux =
s2 − a2

4µ

dp

dx
(15)
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Flow vectors

How do the flow vectors look like?
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