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Recap : non-dimensionalized N_
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Low Re flows B

o When Re < 1, viscous forces dominate and the flow is ‘laminar’
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Low Re flows _

e When Re < 1, viscous forces dominate and the flow is ‘laminar’
» We consider flows where rotation can be neglected (Ro > 1)
® The absence of u - Vu term allows for analytical solutions

4/32



“Dynamic” pressure
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“Dynamic” pressure
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Dynamic Rl o
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Subtracting,
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ot 0

pg — dynamic pressure
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What do you need for Iamin_



Laminar flows B

o Parallel streamlines
e Time reversible
® Looks “frozen in time" or glass-like appearance
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Some cool videos B

Video 1 : https://youtu.be/K9coK-Le6107t=247
Video 2 : https://youtu.be/57IMufyoCnQ?7t=202
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https://youtu.be/K9coK-Le6i0?t=247
https://youtu.be/57IMufyoCnQ?t=202

Useful? B

Cleanrooms!
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Parallel plates

Driven by top plate moving at velocity U in z-direction and a pressure
gradient Vp
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Parallel plates _—

0
“Fully developed flow" — Far away from edges and steady-state i 0
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Parallel plates —

0
2D nature of the problem dictates : 5 0
z
Mass continuity:
ou  Ov

5ty ="
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Parallel plates B

Mass continuity:

ou Ov

5 "3y ="
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Parallel plates ——

Mass continuity:

ou N ov 0
or Oy
o o ou
Flow is invariant along the x-direction : — =0

ox
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Parallel plates -

Mass continuity:

ou o
or Oy
Flow is invariant along the x-direction : a—u =0
x
Thus, @ =0
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Parallel plates

Mass continuity:

ou o,
or Oy
Flow is invariant along the x-direction : a—u =0
x
0
Thus, a—z =0

Since v =0 at y = 0, v = 0 everywhere.
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Parallel plates

Navier-Stokes get reduced to:

10p
0= ———

p8x+y

10
0=—-—

p Oy

Second equation implies p = p(x) .

dy* (1)

14 /32



Parallel plates

First equation:

(2)
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Parallel plates

First equation:

Integrating twice,

(2)
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Parallel plates

dpy’
_PY | 4+ B
Ji dsc2+ Y+
uly=0)=0= B =
1 dp L? uwU  dpL
w 4*”“7(‘”‘@7) T a2
We get,
U y dp
w= Yy 1, @)
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Special cases

Plane Couette flow: — =0

u=— (5)
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Special cases

Plane Couette flow: @ =0
dx

Plane Poiseuille flow: U =0

(5)

Q)
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Flow vectors B

How does the flow look like?
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Taylor-Couette flow _

($

Also called Circular Couette flow or Cylindrical Couette flow

Q9
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Taylor-Couette flow

Cylindrical ~ coordinate  system:
(5,6, 2)

s : along cylindrical radius

¢ : azimuth

z : along the axis of the cylinder
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Symmetry B

3:()and—:()
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1d
Ed_s<5“5) = 0 = suy = constant (7)
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1d
gd_s(sus) = 0 = sus; = constant (7)

us(s =11) = 0 = uy = 0 everywhere.
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Equations of motion

s-direction:
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Equations of motion _

s-direction:
2
(Y _ ldp (8)
S pds

Pressure increases radially outward because of the centrifugal force.
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Equations of motion _

¢-direction:
p(Viu)y =0

= gk_f%L _f§1 _ zfﬁf = ()
H sds 8d8u¢ s2| (9)

d2u¢ 1du¢ U 0
ds?2 s ds 52
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Equations of motion _

¢-direction:
p(Viu)y =0

= J;_E%_ _Ei_ _ Efﬁi = ()
H sds Sdsu¢ s2| (9)

d2u¢ +1du¢ Uy 0
ds? s ds 52

Assume an ansatz uy = s™ , obtain the indicial equation:

m>—1=0=m==+1
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Equations of motion

Thus,

uy = As+ B/s (10)
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Equations of motion _

Thus,

uy = As+ B/s (10)
Using boundary conditions, us(r1) = Q171 and ug(re) = Qors,

S)QT% —-S)lr%

A=
o (11)
B— (U — Qo)rirs

D) D)
rg — T
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Streamlines B

How to the flow streamlines look like?
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Pipe flow

® Flow through a pipe along its axis.
® Using cylindrical coordinates again, x along the pipe plays the role of z now.
® Only non-zero component of velocity is in the z-direction.
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Equations of motion

s-direction:

P (12)
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Equations of motion

s-direction:
0= —— (12)

Pressure is a function of z alone.
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Equations of motion

z-direction:

dp pd [ du,
= ——+ = 1
! d:p+sds(sd8) (13)
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Equations of motion _

z-direction:

dp pd [ du,
= —— - —— 1
. dx+sds(sds) (13)

First term is a function of x, second is a function of s = both must be
constant — pressure varies linearly along the pipe.
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Equations of motion

_dp  pd [ dug
0“@*2%(%3)
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Equations of motion _

d d ( du,
0=-—L4E2 (su)

dr  sds ds

Integrating twice, we get,

s? dp

= Al B 14
4,udx+ et (14)

Uy =
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Equations of motion

_dp  pd [ dug
0="- dx+sds(sds)

Integrating twice, we get,

s? dp

Al B 14
4ﬂdx+ ns+ (14)

Uy =

Since u, has to be finite at the axis, A = 0. Using u, = 0 at s = a,
2d
where a is the radius of the pipe, we get, B = _a__p.
Ap dx
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Equations of motion

s°—a”dp
 4p do

(15)
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Flow vectors B

How do the flow vectors look like?
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