Dynamo experiments and simulations

Ankit Barik

Planetary Interiors

Recommended reading

- Christensen, U. R. (2010). Dynamo Scaling Laws and Applications to the Planets. *Space Science Reviews*, 152(1-4):565–590.
- Lathrop, D. P. and Forest, C. B. (2011). Magnetic dynamos in the lab. Physics Today, 64(7):40.
- Le Bars, M., Barik, A., Burmann, F., Lathrop, D. P., Noir, J., Schaeffer, N., and Triana, S. A. (2022). Fluid Dynamics Experiments for Planetary Interiors. *Surveys in Geophysics*, 43(1):229–261.
- Olson, P. (2013). Experimental Dynamos and the Dynamics of Planetary Cores. Annual Review of Earth and Planetary Sciences, 41:153–181.
- Stanley, S. and Glatzmaier, G. A. (2010). Dynamo Models for Planets Other Than Earth. *Space Science Reviews*, 152(1-4):617–649.
- Wicht, J. and Sanchez, S. (2019). Advances in geodynamo modelling. *Geophysical and Astrophysical Fluid Dynamics*, 113(1-2):2–50.
- Wicht, J. and Tilgner, A. (2010). Theory and Modeling of Planetary Dynamos. *Space Science Reviews*, 152(1-4):501–542.

A brief history

1950s	Bullard and Gellman (1954)	First attempt at dynamo sim- ulations
1960s	Lowes and Wilkinson (1963, 1968)	First dynamo experiments
	Malkus (1968)	First precession experiments
1990s	Glatzmaier and Roberts (1995); Kageyama et al. (1995)	First successful Earth-like simulations

A brief history

2000	Riga experiment (Gailitis et al., 2000)	Ponomarenko flow
2001	Karlsruhe experiment (Stieglitz and Müller, 2001)	G. O. Roberts flow
2002	VKS experiment (Bourgoin et al., 2002)	Von Kármán swirling flow
2005	First precession simulations (Tilgner, 2005)	First non-convective dynamo simulations
2006	Dynamo scaling laws (Chris- tensen and Aubert, 2006)	

✓ Observations and experiments are reality

- ✓ Observations and experiments are reality
- Can attain parameters such as Reynolds / magnetic Reynolds numbers closer to actual planetary values

- ✓ Observations and experiments are reality
- Can attain parameters such as Reynolds / magnetic Reynolds numbers closer to actual planetary values
- 🗸 Short run time

- ✓ Observations and experiments are reality
- Can attain parameters such as Reynolds / magnetic Reynolds numbers closer to actual planetary values
- ✓ Short run time
- × Diagnostics are difficult to set up and are limited

- ✓ Observations and experiments are reality
- Can attain parameters such as Reynolds / magnetic Reynolds numbers closer to actual planetary values
- ✓ Short run time
- × Diagnostics are difficult to set up and are limited
- × More complex post-processing compared to simulations

- ✓ Observations and experiments are reality
- Can attain parameters such as Reynolds / magnetic Reynolds numbers closer to actual planetary values
- ✓ Short run time
- imes Diagnostics are difficult to set up and are limited
- × More complex post-processing compared to simulations
- × More difficult to maintain

- ✓ Observations and experiments are reality
- Can attain parameters such as Reynolds / magnetic Reynolds numbers closer to actual planetary values
- ✓ Short run time
- × Diagnostics are difficult to set up and are limited
- × More complex post-processing compared to simulations
- × More difficult to maintain
- × "There are no save games in real life"

Why simulations?

\checkmark Can analyse everything in great detail

- Can analyse everything in great detail
- Have complete control over parameters and conditions

Can analyse everything in great detail
 Have complete control over parameters and conditions
 Often too idealized

- Can analyse everything in great detail
- ✓ Have complete control over parameters and conditions
- × Often too idealized
- × Parameters far away from real planetary values

Parameter space

$$Re = \frac{UL}{\nu}$$
$$Rm = \frac{UL}{\eta}$$

$$Rm = \frac{UL}{\eta}$$

$$Rm = \frac{UL}{\eta}$$

$$Rm = \frac{UL}{\eta}$$

 $U \rightarrow \mathsf{More power}$

$L \rightarrow Make$ the experiment larger

 $\eta = 1/\mu_0 \sigma \rightarrow$ Make the fluid more conductive

$$Rm = \frac{UL}{\eta}$$

- Liquid sodium is the best electrically conducting liquid affordable in large volumes
- Magnetic diffusivity and viscosity similar to core conditions, $\eta \approx 0.1 \, {\rm m^2/s}, \nu \approx 10^{-6} \, {\rm m^2/s}$
- It melts at 97° C, so the experiments need a high operating temperature
- Hazardous to handle, highly reactive, requires specific set up, e.g.: water proof environment, fire extinguishing system, stainless steel flooring, dedicated alarm system etc.

 $Rm = \frac{UL}{\eta}$

- Power requirements: "idealized" experiments (flow geometry forced to be very efficient at generating dynamos) create dynamos when Rm > 100. Typical size L = 1 m and flow speed U = 10 m/s requires $\sim 100 \text{ kW}$ of power.
- $P \propto Rm^3$
- To reach astrophysical Rm, we would need $\sim 100 \, {
 m MW}$ of power!

Riga experiment, 2000

- First successful dynamo experiment with a liquid
- Based on "Ponomarenko flow"

Karlsruhe experiment, 2001

Based on "G. O. Roberts flow"

VKS experiment, Cadarache, 2002

- Also known as "French washing machine"
- A homogeneous cylinder instead of pipes, but uses propellers to drive the flow

VKS experiment, Cadarache, 2002

- VKS exhibited intermittent and steady dynamo states and chaotic Earth-like reversals
- Resulting dipolar field cannot be explained by mean (large scale) flows
- Dynamo action a result of differential rotation combined with coherent small-scale vortices at the edges of the propeller blades. Also needed to make the blades ferromagnetic to get dynamo action.

DTS experiment, Grenoble, France

- Spherical shell (40 cm diameter) of liquid sodium surrounding highly magnetised inner solid sphere
- Uses "spherical Couette flow" no propellers
- Has shown a wide variety of wave modes and jets due to Lorentz forces, but no self-excited dynamo

Maryland experiments

- spherical shells with increasing diameters (30 cm to 3 meter) have shown turbulent induction, and waves and modes restored by Coriolis and Lorentz forces
- the 3 meter experiments contains about 15 tons of liquid sodium
- no self-excited dynamo yet
- baffles installed on inner sphere for better coupling with the sodium

Wisconsin experiments

- spherical shell (1 meter diameter) drives flow with 2 propellers just at opposite poles
- goal is to achieve critical Rm for self-excitation
- hasn't reached it yet, but has shown how turbulence increases effective diffusivity thereby repressing field generation

Big Red Ball (BRB), Madison, Wisconsin

- 3 meter diameter experiment, earlier called MPDX (Madison Plasma Dynamo Experiment), now a multipurpose facility
- Uses plasma instead of liquid metal and can thus control the conductivity of fluid and thus η

SpiNaCH, ETH Zürich

Liquid sodium in a 42 cm diameter spherical cavity, capable of running at 5000 rpm

DRESDYN, Dresden, Germany

Liquid sodium in a precessing cylinder, 2 meter in both diameter and height

- no spherical (i.e. planet/star-like) geometry experiment has generated a self-sustained dynamo yet
- none of the experiments use buoyancy to drive the flow
- there are some smaller hydrodynamic experiments of convection in hemispheres that use centrifugal forces to mimic gravity
- lots of exciting progress to be made in the near future

Dynamo simulations

Momentum:
$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p - 2\Omega \hat{\boldsymbol{z}} \times \boldsymbol{u} + \alpha gT \hat{\boldsymbol{r}} + \frac{1}{\mu_0 \rho} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} + \nu \nabla^2 \boldsymbol{u}$$

Induction:
$$rac{\partial m{B}}{\partial t} =
abla imes (m{u} imes m{B}) + \eta
abla^2 m{B}$$

Energy:
$$rac{\partial T}{\partial t} + oldsymbol{u} \cdot
abla T = \kappa
abla^2 T + Q$$

Continuity + Maxwell: $\nabla \cdot \boldsymbol{u} = 0, \nabla \cdot \boldsymbol{B} = 0$

- u: velocity p: modified pressure
- Ω : rotation rate
- α : thermal expansion coefficient

- $finite{g}$: acceleration due to gravity
- T : temperature
- lacksim B : magnetic field
- ν : viscosity

- lacksquare η : magnetic diffusivity
- κ : thermal diffusivity
- Q : heat source/sink

(1

(2)

(3)

(4)

Time scale : $\tau_{\nu} = L^2/\nu$ Length scale : $L = r_o - r_i$ Velocity scale : $L/\tau_{\nu} = \nu/L$ Temperature scale : Either $\Delta T = T_i - T_o$ or LdT/dr at a boundary

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p - \frac{2}{E} \hat{\boldsymbol{z}} \times \boldsymbol{u} + \frac{Ra}{Pr} T\left(\frac{r}{r_o}\right) \hat{\boldsymbol{r}} + \frac{1}{EPm} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} + \nabla^2 \boldsymbol{u}$$
(5)

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) + \frac{1}{Pm} \nabla^2 \boldsymbol{B}$$
(6)
$$\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T = \frac{1}{Pr} \nabla^2 T + Q$$
(7)
$$\nabla \cdot \boldsymbol{u} = 0, \nabla \cdot \boldsymbol{B} = 0$$
(8)

0-

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p - \frac{2}{E} \hat{\boldsymbol{z}} \times \boldsymbol{u} + \frac{Ra}{Pr} T\left(\frac{r}{r_o}\right) \hat{\boldsymbol{r}} + \frac{1}{EPm} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} + \nabla^2 \boldsymbol{u}$$
(9)

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) + \frac{1}{Pm} \nabla^2 \boldsymbol{B}$$
(10)

$$\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T = \frac{1}{Pr} \nabla^2 T + Q \tag{11}$$

$$\nabla \cdot \boldsymbol{u} = 0, \nabla \cdot \boldsymbol{B} = 0 \tag{12}$$

Non-dimensional parameters

Parameter	Earth's core	Giant planets	Sun
Ekman number, $E=rac{ u}{\Omega L^2}$	10^{-15}	10^{-18}	10^{-15}
Rayleigh number, $Ra=rac{lpha_{o}g_{o}\Delta TL^{3}}{ u\kappa}$	10^{27}	10^{30}	10^{24}
Prandtl number, $Pr=rac{ u}{\kappa}$	0.1	0.1	10^{-6}
Magnetic Prandtl number, $Pm=rac{ u}{\lambda}$	10^{-6}	10^{-7}	10^{-3}
Elsasser number, Λ (Lorentz/Coriolis)	1	1	?
Local Rossby number, Ro_l (Inertia/Coriolis)	10^{-2}	10^{-3}	1
Magnetic Reynolds number, ${\it Rm}$	1000	10^{5}	10^{9}
Reynolds number, Re	10^{9}	10^{12}	10^{12}

Non-dimensional parameters

Parameter	Earth's core	Tractable	Most extreme
Eman number, $E=rac{ u}{\Omega L^2}$	10^{-15}	$\geq 10^{-6}$	10^{-7}
Rayleigh number, $Ra=rac{lpha_{o}g_{o}\Delta TL^{3}}{ u\kappa}$	10^{27}	$\leq 10^{12}$	10^{12}
Prandtl number, $Pr=rac{ u}{\kappa}$	0.1	0.1 - 10	1
Magnetic Prandtl number, $Pm=rac{ u}{\lambda}$	10^{-6}	0.1	0.1
Elsasser number, Λ (Lorentz/Coriolis)	1	1	3.7
Local Rossby number, Ro_l (Inertia/Coriolis)	10^{-2}	10^{-3} - 10^{-1}	0.01
Magnetic Reynolds number, Rm	1000	1000	514
Reynolds number, <i>Re</i>	10^{9}	100 - 1000	5140

Non-dimensional parameters

Parameter	Earth's core	Simulations	Experiments
Eman number, $E=rac{ u}{\Omega L^2}$	10^{-15}	$\geq 10^{-6}$	$> 10^{-8}$
Rayleigh number, $Ra=rac{lpha_{o}g_{o}\Delta TL^{3}}{ u\kappa}$	10^{27}	$\leq 10^{12}$?
Prandtl number, $Pr=rac{ u}{\kappa}$	0.1	0.1 - 10	0.02 - 10
Magnetic Prandtl number, $Pm=rac{ u}{\lambda}$	10^{-6}	0.1	$> 10^{-5}$
Elsasser number, Λ (Lorentz/Coriolis)	1	1	< 1
Local Rossby number, Ro_l (Inertia/Coriolis)	10^{-2}	10^{-3} - 10^{-1}	> 0.1
Magnetic Reynolds number, Rm	1000	1000	$< 10^{7}$
Reynolds number, Re	10^{9}	100 - 1000	0 - 100

- Viscosity & thermal diffusivity too large compared to magnetic diffusivity
- Rotation too slow, much less turbulent
- Hope that if we are getting the force balances right, then models might be telling us something about core dynamics
- Scaling laws suggest this is happening (e.g. Christensen, 2010)

Can we get to Earth-like values?

(Roberts and King, 2013)

Flow/field characteristics

(Schaeffer et al., 2017)

Comparison with observations

Surface field Secular variation (Wicht and Sanchez, 2019)

Comparison with observations

Why does it work?

Why does it work?

- Importance of rotation
- Force balance

Force balance

Importance of forces : Coriolis (C), Buoyancy (A), Magnetic (M), Inertia (I), Pressure and Viscosity

- Pressure and Coriolis forces form the leading order force balance : Quasi-geostrophy (QG)
- Other forces can lead to either MAC or a CIA balance
- Earth lies in a QG-MAC state (Aubert, 2020)
- Most advanced simulations progressively moving towards a better QG-MAC balance

Regime diagrams

Regime diagrams

(Schwaiger et al., 2019)

Regime diagrams

(Wicht et al., 2015)

Scaling laws

(Christensen, 2010)

Codes

MagIC https://magic-sph. github.io/

XSHELLS https://nschaeff. bitbucket.io/xshells

Rayleigh https:// rayleigh-documentation. readthedocs.io/

- Far away from planets in terms of parameters
- Can reproduce major features of planetary magnetic fields
- Correct force balance
- Can be used to obtain scaling laws applicable to planets and rapidly rotating stars
- Future of simulations lies in pushing more extreme parameters as well as adding new ingredients to models

- Several open source codes available!
- Feel free to download and run small models. :)

- Simulations and experiments complement each other
- Experiments provide observations that need to be reproduced by simulations
- Simulations can help understand experiments better by analysing the system in greater detail than experimentally possible (e.g. Barik et al., 2018)

References I

- Aubert, J. (2020). Recent geomagnetic variations and the force balance in Earth's core. *Geophysical Journal International*, 221(1):378–393.
- Barik, A., Triana, S. A., Hoff, M., and Wicht, J. (2018). Triadic resonances in the wide-gap spherical Couette system. *Journal of Fluid Mechanics*, 843:211–243.
- Bourgoin, M., Marié, L., Pétrélis, F., Gasquet, C., Guigon, A., Luciani, J.-B., Moulin, M., Namer, F., Burguete, J., Chiffaudel, A., Daviaud, F., Fauve, S., Odier, P., and Pinton, J.-F. (2002). Magnetohydrodynamics measurements in the von Kármán sodium experiment. *Physics of Fluids*, 14(9):3046–3058.
- Bullard, E. and Gellman, H. (1954). Homogeneous Dynamos and Terrestrial Magnetism. *Philosophical Transactions of the Royal Society of London Series A*, 247(928):213–278.
- Christensen, U. R. (2010). Dynamo Scaling Laws and Applications to the Planets. *Space Science Reviews*, 152(1-4):565–590.
- Christensen, U. R. and Aubert, J. (2006). Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. *Geophysical Journal International*, 166(1):97–114.
- Gailitis, A., Lielausis, O., Dement'ev, S., Platacis, E., Cifersons, A., Gerbeth, G., Gundrum, T., Stefani, F., Christen, M., Hänel, H., and Will, G. (2000). Detection of a Flow Induced Magnetic Field Eigenmode in the Riga Dynamo Facility. *Physical Review Letters*, 84(19):4365–4368.
- Glatzmaier, G. A. and Roberts, P. H. (1995). A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. *Nature*, 377(6546):203–209.

References II

- Kageyama, A., Sato, T., and Complexity Simulation Group (1995). Computer simulation of a magnetohydrodynamic dynamo. II. *Physics of Plasmas*, 2(5):1421–1431.
- Lowes, F. J. and Wilkinson, I. (1963). Geomagnetic Dynamo: A Laboratory Model. Nature, 198(4886):1158-1160.
- Lowes, F. J. and Wilkinson, I. (1968). Geomagnetic Dynamo: An Improved Laboratory Model. Nature, 219(5155):717–718.
- Malkus, W. V. R. (1968). Precession of the Earth as the Cause of Geomagnetism. Science, 160(3825):259-264.
- Meduri, D. G., Biggin, A. J., Davies, C. J., Bono, R. K., Sprain, C. J., and Wicht, J. (2021). Numerical Dynamo Simulations Reproduce Paleomagnetic Field Behavior. *Geophysical Research Letters*, 48(5):e90544.
- Roberts, P. H. and King, E. M. (2013). On the genesis of the Earth's magnetism. *Reports on Progress in Physics*, 76(9):096801.
- Schaeffer, N., Jault, D., Nataf, H. C., and Fournier, A. (2017). Turbulent geodynamo simulations: a leap towards Earth's core. *Geophysical Journal International*, 211(1):1–29.
- Schwaiger, T., Gastine, T., and Aubert, J. (2019). Force balance in numerical geodynamo simulations: a systematic study. Geophysical Journal International, 219:S101–S114.
- Stieglitz, R. and Müller, U. (2001). Experimental demonstration of a homogeneous two-scale dynamo. *Physics of Fluids*, 13(3):561–564.
- Tilgner, A. (2005). Precession driven dynamos. Physics of Fluids, 17(3):034104-034104-6.

- Wicht, J. and Meduri, D. G. (2016). A gaussian model for simulated geomagnetic field reversals. *Physics of the Earth* and *Planetary Interiors*, 259:45–60.
- Wicht, J. and Sanchez, S. (2019). Advances in geodynamo modelling. *Geophysical and Astrophysical Fluid Dynamics*, 113(1-2):2–50.
- Wicht, J., Stellmach, S., and Harder, H. (2015). Numerical Dynamo Simulations: From Basic Concepts to Realistic Models, pages 779–834. Springer Berlin Heidelberg, Berlin, Heidelberg.