Dynamo experiments and simulations

Ankit Barik

Planetary Interiors

Recommended reading

Christensen, U. R. (2010). Dynamo Scaling Laws and Applications to the Planets. Space Science Reviews, 152(1-4):565–590.

Lathrop, D. P. and Forest, C. B. (2011). Magnetic dynamos in the lab. Physics Today, 64(7):40.

- Le Bars, M., Barik, A., Burmann, F., Lathrop, D. P., Noir, J., Schaeffer, N., and Triana, S. A. (2022). Fluid Dynamics Experiments for Planetary Interiors. Surveys in Geophysics, 43(1):229–261.
- Olson, P. (2013). Experimental Dynamos and the Dynamics of Planetary Cores. Annual Review of Earth and Planetary Sciences, 41:153–181.
- Stanley, S. and Glatzmaier, G. A. (2010). Dynamo Models for Planets Other Than Earth. Space Science Reviews, 152(1-4):617–649.
- Wicht, J. and Sanchez, S. (2019). Advances in geodynamo modelling. Geophysical and Astrophysical Fluid Dynamics, 113(1-2):2–50.
- Wicht, J. and Tilgner, A. (2010). Theory and Modeling of Planetary Dynamos. Space Science Reviews, 152(1-4):501–542.

A brief history

A brief history

◆ Observations and experiments are reality

- ◆ Observations and experiments are reality
- \triangleleft Can attain parameters such as Reynolds / magnetic Reynolds numbers closer to actual planetary values

- ◆ Observations and experiments are reality
- \triangleleft Can attain parameters such as Reynolds / magnetic Reynolds numbers closer to actual planetary values
- ✓ Short run time

- ◆ Observations and experiments are reality
- \triangleleft Can attain parameters such as Reynolds / magnetic Reynolds numbers closer to actual planetary values
- \blacktriangleright Short run time
- X Diagnostics are difficult to set up and are limited

- **◆ Observations and experiments are reality**
- \blacktriangleright Can attain parameters such as Reynolds / magnetic Reynolds numbers closer to actual planetary values
- ✓ Short run time
- $\boldsymbol{\times}$ Diagnostics are difficult to set up and are limited
- $\boldsymbol{\times}$ More complex post-processing compared to simulations

- **◆ Observations and experiments are reality**
- \triangleleft Can attain parameters such as Reynolds / magnetic Reynolds numbers closer to actual planetary values
- ✓ Short run time
- $\boldsymbol{\times}$ Diagnostics are difficult to set up and are limited
- X More complex post-processing compared to simulations
- $\boldsymbol{\times}$ More difficult to maintain

- **◆ Observations and experiments are reality**
- \blacktriangleright Can attain parameters such as Reynolds / magnetic Reynolds numbers closer to actual planetary values
- ✓ Short run time
- $\boldsymbol{\times}$ Diagnostics are difficult to set up and are limited
- X More complex post-processing compared to simulations
- $\boldsymbol{\times}$ More difficult to maintain
- $\mathsf{\times}$ "There are no save games in real life"

Why simulations?

◆ Can analyse everything in great detail

 \vee Can analyse everything in great detail ◆ Have complete control over parameters and conditions \vee Can analyse everything in great detail ◆ Have complete control over parameters and conditions $\boldsymbol{\times}$ Often too idealized

- \vee Can analyse everything in great detail
- ◆ Have complete control over parameters and conditions
- $\boldsymbol{\times}$ Often too idealized
- $\boldsymbol{\times}$ Parameters far away from real planetary values

Parameter space

$$
Re = \frac{UL}{\nu}
$$

$$
Rm = \frac{UL}{\eta}
$$

 $U \rightarrow$ More power

$L \rightarrow$ Make the experiment larger

 $\eta = 1/\mu_0 \sigma \rightarrow$ Make the fluid more conductive

$$
Rm = \frac{UL}{\eta}
$$

- Liquid sodium is the best electrically conducting liquid affordable in large volumes ٠
- Magnetic diffusivity and viscosity similar to core conditions, $\eta \approx 0.1 \,\mathrm{m}^2/\mathrm{s}, \nu \approx 10^{-6} \,\mathrm{m}^2/\mathrm{s}$
- It melts at 97° C, so the experiments need a high operating temperature
- Hazardous to handle, highly reactive, requires specific set up, e.g.: water proof environment, fire extinguishing system, stainless steel flooring, dedicated alarm system etc.

$$
Rm = \frac{UL}{\eta}
$$

- Power requirements: "idealized" experiments (flow geometry forced to be very . efficient at generating dynamos) create dynamos when $Rm > 100$. Typical size $L = 1$ m and flow speed $U = 10$ m/s requires ~ 100 kW of power.
- \bullet P $\propto Rm^3$
- To reach astrophysical Rm , we would need $\sim 100\,\mathrm{MW}$ of power!

Riga experiment, 2000

- First successful dynamo experiment with a liquid \bullet
- Based on "Ponomarenko flow" \bullet

Karlsruhe experiment, 2001

Based on "G. O. Roberts flow"

VKS experiment, Cadarache, 2002

- Also known as "French washing machine" ۰
- A homogeneous cylinder instead of pipes, but uses propellers to drive the flow ۰

VKS experiment, Cadarache, 2002

- VKS exhibited intermittent and steady dynamo states and chaotic Earth-like ٠ reversals
- Resulting dipolar field cannot be explained by mean (large scale) flows
- Dynamo action a result of differential rotation combined with coherent ٠ small-scale vortices at the edges of the propeller blades. Also needed to make the blades ferromagnetic to get dynamo action.

DTS experiment, Grenoble, France

- Spherical shell (40 cm diameter) of liquid sodium surrounding highly magnetised inner solid sphere
- Uses "spherical Couette flow" no propellers ٠
- Has shown a wide variety of wave modes and jets due to Lorentz forces, but no self-excited dynamo

Maryland experiments

- spherical shells with increasing diameters (30 cm to 3 meter) have shown turbulent induction, and waves and modes restored by Coriolis and Lorentz forces
- the 3 meter experiments contains about 15 tons of liquid sodium
- no self-excited dynamo yet
- baffles installed on inner sphere for better coupling with the sodium

Wisconsin experiments

- spherical shell (1 meter diameter) drives flow with 2 propellers just at opposite poles
- goal is to achieve critical Rm for self-excitation
- hasn't reached it yet, but has shown how turbulence increases effective diffusivity thereby repressing field generation

Big Red Ball (BRB), Madison, Wisconsin

- 3 meter diameter experiment, earlier called MPDX (Madison Plasma Dynamo Experiment), now a multipurpose facility
- Uses plasma instead of liquid metal and can thus control the conductivity of fluid and thus n

SpiNaCH, ETH Zürich

Liquid sodium in a 42 cm diameter spherical cavity, capable of running at 5000 rpm

DRESDYN, Dresden, Germany

Liquid sodium in a precessing cylinder, 2 meter in both diameter and height

- no spherical (i.e. planet/star-like) geometry experiment has generated a self-sustained dynamo yet
- none of the experiments use buoyancy to drive the flow
- there are some smaller hydrodynamic experiments of convection in \bullet hemispheres that use centrifugal forces to mimic gravity
- lots of exciting progress to be made in the near future

Dynamo simulations

$$
\text{Momentum: } \frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p - 2\Omega \hat{\boldsymbol{z}} \times \boldsymbol{u} + \alpha g T \hat{\boldsymbol{r}} + \frac{1}{\mu_0 \rho} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} + \nu \nabla^2 \boldsymbol{u}
$$

Induction:
$$
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}
$$
 (2)

Energy:
$$
\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \kappa \nabla^2 T + Q
$$
 (3)

Continuity + Maxwell: $\nabla \cdot \mathbf{u} = 0$, $\nabla \cdot \mathbf{B} = 0$ (4)

- u : velocity p : modified pressure Ω : rotation rate
- α : thermal expansion coefficient
- q : acceleration due to gravity
- T : temperature
- B : magnetic field
- ν : viscosity
- η : magnetic diffusivity
- κ : thermal diffusivity
- Q : heat source/sink $26/51$

 (1)

Time scale : $\tau_\nu = L^2/\nu$ Length scale : $L = r_o - r_i$ Velocity scale : $L/\tau_{\nu} = \nu/L$ Temperature scale : Either $\Delta T = T_i - T_o$ or LdT/dr at a boundary

$$
\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p - \frac{2}{E} \hat{\boldsymbol{z}} \times \boldsymbol{u} + \frac{Ra}{Pr} T\left(\frac{r}{r_o}\right) \hat{\boldsymbol{r}} + \frac{1}{E P m} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} + \nabla^2 \boldsymbol{u}
$$
\n(5)

$$
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \frac{1}{Pm} \nabla^2 \mathbf{B}
$$
(6)

$$
\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \frac{1}{Pr} \nabla^2 T + Q
$$
(7)

$$
\nabla \cdot \mathbf{u} = 0, \nabla \cdot \mathbf{B} = 0
$$
(8)

$$
\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p - \frac{2}{E} \hat{\boldsymbol{z}} \times \boldsymbol{u} + \frac{Ra}{Pr} T\left(\frac{r}{r_o}\right) \hat{\boldsymbol{r}} + \frac{1}{E P m} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} + \nabla^2 \boldsymbol{u}
$$
\n(9)

$$
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \frac{1}{Pm} \nabla^2 \mathbf{B}
$$
(10)

$$
\frac{\partial T}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \frac{1}{Pm} \nabla^2 \mathbf{B}
$$
(11)

$$
\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \frac{1}{Pr} \nabla^2 T + Q \tag{11}
$$

$$
\nabla \cdot \mathbf{u} = 0, \nabla \cdot \mathbf{B} = 0 \tag{12}
$$

Non-dimensional parameters

Non-dimensional parameters

Non-dimensional parameters

- Viscosity & thermal diffusivity too large compared to magnetic diffusivity
- Rotation too slow, much less turbulent
- Hope that if we are getting the force balances right, then models might be telling us something about core dynamics
- Scaling laws suggest this is happening (e.g. [Christensen, 2010\)](#page-1-0)

Can we get to Earth-like values?

[\(Roberts and King, 2013\)](#page-58-6)

Flow/field characteristics

[\(Schaeffer et al., 2017\)](#page-58-7)

Comparison with observations

Surface field Surface Secular variation [\(Wicht and Sanchez, 2019\)](#page-1-1)

Comparison with observations

Why does it work?

Why does it work?

- **Importance of rotation**
- **Force balance**

Force balance

Importance of forces : Coriolis (C), Buoyancy (A), Magnetic (M), Inertia (I), Pressure and Viscosity

- Pressure and Coriolis forces form the leading order force balance : Quasi-geostrophy (QG)
- Other forces can lead to either MAC or a CIA balance
- **Earth lies in a QG-MAC state [\(Aubert, 2020\)](#page-57-5)**
- Most advanced simulations progressively moving towards a better QG-MAC balance

Regime diagrams

Regime diagrams

[\(Schwaiger et al., 2019\)](#page-58-9)

Regime diagrams

[\(Wicht et al., 2015\)](#page-59-1)

Scaling laws

[\(Christensen, 2010\)](#page-1-0)

Codes

MagIC [https://magic-sph.](https://magic-sph.github.io/) [github.io/](https://magic-sph.github.io/)

Rayleigh [https://](https://rayleigh-documentation.readthedocs.io/) [rayleigh-documentatio](https://rayleigh-documentation.readthedocs.io/)n. [readthedocs.io/](https://rayleigh-documentation.readthedocs.io/)

- Far away from planets in terms of parameters
- Can reproduce major features of planetary magnetic fields
- Correct force balance
- Can be used to obtain scaling laws applicable to planets and rapidly rotating stars
- Future of simulations lies in pushing more extreme parameters as well as adding new ingredients to models
- Several open source codes available!
- Feel free to download and run small models. :)

- Simulations and experiments complement each other
- Experiments provide observations that need to be reproduced by simulations
- Simulations can help understand experiments better by analysing the system in greater detail than experimentally possible (e.g. [Barik](#page-57-6) [et al., 2018\)](#page-57-6)

References I

- Aubert, J. (2020). Recent geomagnetic variations and the force balance in Earth's core. Geophysical Journal International, 221(1):378–393.
- Barik, A., Triana, S. A., Hoff, M., and Wicht, J. (2018). Triadic resonances in the wide-gap spherical Couette system. Journal of Fluid Mechanics, 843:211–243.
- Bourgoin, M., Marié, L., Pétrélis, F., Gasquet, C., Guigon, A., Luciani, J.-B., Moulin, M., Namer, F., Burguete, J., Chiffaudel, A., Daviaud, F., Fauve, S., Odier, P., and Pinton, J.-F. (2002). Magnetohydrodynamics measurements in the von Kármán sodium experiment. Physics of Fluids, 14(9):3046-3058.
- Bullard, E. and Gellman, H. (1954). Homogeneous Dynamos and Terrestrial Magnetism. Philosophical Transactions of the Royal Society of London Series A, 247(928):213–278.
- Christensen, U. R. (2010). Dynamo Scaling Laws and Applications to the Planets. Space Science Reviews, 152(1-4):565–590.
- Christensen, U. R. and Aubert, J. (2006). Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophysical Journal International, 166(1):97-114.
- Gailitis, A., Lielausis, O., Dement'ev, S., Platacis, E., Cifersons, A., Gerbeth, G., Gundrum, T., Stefani, F., Christen, M., Hänel, H., and Will, G. (2000). Detection of a Flow Induced Magnetic Field Eigenmode in the Riga Dynamo Facility. Physical Review Letters, 84(19):4365–4368.
- Glatzmaier, G. A. and Roberts, P. H. (1995). A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature, 377(6546):203–209.

References II

- Kageyama, A., Sato, T., and Complexity Simulation Group (1995). Computer simulation of a magnetohydrodynamic dynamo. II. Physics of Plasmas, 2(5):1421–1431.
- Lowes, F. J. and Wilkinson, I. (1963). Geomagnetic Dynamo: A Laboratory Model. Nature, 198(4886):1158–1160.
- Lowes, F. J. and Wilkinson, I. (1968). Geomagnetic Dynamo: An Improved Laboratory Model. Nature, 219(5155):717–718.
- Malkus, W. V. R. (1968). Precession of the Earth as the Cause of Geomagnetism. Science, 160(3825):259–264.
- Meduri, D. G., Biggin, A. J., Davies, C. J., Bono, R. K., Sprain, C. J., and Wicht, J. (2021). Numerical Dynamo Simulations Reproduce Paleomagnetic Field Behavior. Geophysical Research Letters, 48(5):e90544.
- Roberts, P. H. and King, E. M. (2013). On the genesis of the Earth's magnetism. Reports on Progress in Physics, 76(9):096801.
- Schaeffer, N., Jault, D., Nataf, H. C., and Fournier, A. (2017). Turbulent geodynamo simulations: a leap towards Earth's core. Geophysical Journal International, 211(1):1–29.
- Schwaiger, T., Gastine, T., and Aubert, J. (2019). Force balance in numerical geodynamo simulations: a systematic study. Geophysical Journal International, 219:S101–S114.
- Stieglitz, R. and Müller, U. (2001). Experimental demonstration of a homogeneous two-scale dynamo. Physics of Fluids, 13(3):561–564.
- Tilgner, A. (2005). Precession driven dynamos. Physics of Fluids, 17(3):034104-034104-6.

References III

- Wicht, J. and Meduri, D. G. (2016). A gaussian model for simulated geomagnetic field reversals. Physics of the Earth and Planetary Interiors, 259:45–60.
- Wicht, J. and Sanchez, S. (2019). Advances in geodynamo modelling. Geophysical and Astrophysical Fluid Dynamics, 113(1-2):2–50.
- Wicht, J., Stellmach, S., and Harder, H. (2015). Numerical Dynamo Simulations: From Basic Concepts to Realistic Models, pages 779–834. Springer Berlin Heidelberg, Berlin, Heidelberg.