
Conservation Laws III : Energy conservation

September 2023

1 Total energy equation

Conservation of energy requires that the change in total energy dE of a collection of fluid parcels
comes from change in heat energy dQ and from the contribution of work done dW by all the forces,

dE = dQ+ dW , (1)

which gives,

dE

dt
=

dQ

dt
+

dW

dt
. (2)

Simplifying the LHS

The total energy for a fixed collection of fluid particles is the sum of the kinetic energy

(
1

2
ρu2

)
and the internal energy ρe integrated over the volume, i.e.,

dE

dt
=

∫
V

d

dt
ρ

(
1

2
u2 + e

)
dV =

d

dt

∫
V

ρe0 , (3)

where, e0 =
1

2
u2 + e. Using Reynolds transport theorem we get,

dE

dt
=

∫
V

∂

∂t
(ρe0)dV +

∫
S

ρe0u · n̂dS

=

∫
V

∂

∂t
(ρe0)dV +

∫
V

∇ · (ρue0)dV

=

∫
V

[
e0
∂ρ

∂t
+ ρ

∂e0
∂t

+ e0∇ · (ρu) + ρu · ∇e0

]
dV

=

∫
V

[
e0

(
∂ρ

∂t
+∇ · (ρu)

)
+ ρ

(
∂e0
∂t

+ u · ∇u

)]
dV ,

(4)

which gives

dE

dt
=

∫
V

ρ

(
∂e0
∂t

+ u · ∇e0

)
dV =

∫
V

ρ
De0
dt

dV , (5)

where we have used the divergence theorem in the second step and mass conservation

(
∂ρ

∂t
+∇ · (ρu)

)
=

0 in the last step.
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Deriving an expression for dQ/dt

The change in thermal energy in the system can be quantified by noticing that any change takes
place due to heat entering or leaving the collection of fluid parcels through the surface of the
volume. Thus,

dQ

dt
= −

∫
S

q · n̂dS = −
∫
V

∇ · qdV , (6)

where q is the heat flux through the surface and the negative sign signifies the fact that the normal
to the surface points outwards while increase in thermal energy happens due to heat entering the
system in the opposite direction, inwards. The second step is derived using the divergence theorem.
Using Fourier’s Law of heat conduction, we can write,

q = −k∇T , (7)

where, ∇T is the local gradient of temperature and k is the thermal conductivity dependent on
the material. This basically says that heat travels down the temperature gradient, from hot to
cold. Substituting this, we obtain,

dQ

dt
=

∫
V

∇ · (k∇T )dV (8)

Deriving an expression for dW/dt

Work w done by a force F is given by

w = F · r (9)

where, r is the displacement due to the force. Thus, the rate of work done is,

dw

dt
= F · dr

dt
= F · u . (10)

Recall while deriving the equation of motion, we had two categories of forces, body forces, F b and
surface stresses, τ. Thus, the total work done by these forces is given by,

dW

dt
=

∫
V

F b · udV +

∫
S

u · τ · n̂dS =

∫
V

(F b · u+∇ · (u · τ)) dV . (11)

We can decompose the second term into contributions from pressure p and deviatoric stresses τ
(note the difference, τ vs τ ),

∇ · (u · τ) = ∇ · (u · (−p+ τ )) = −p(∇ · u)− u · ∇p+∇ · (u · τ ) , (12)

where we have used the chain rule for the product of a scalar and a vector, ∇·(fa) = f∇·a+a·∇f .
The last term can be decomposed into two parts,

∇ · (u · τ ) = ∂

∂xj

(uiτij) = τij
∂uj

∂xj

+ uj
∂τij
∂xj

. (13)

The first part of this represents deformation of the volume due to surface stresses that contributes
to the internal energy while the second part represents work done by the surface stresses to

increase the kinetic energy of the fluid parcel. Recall that
∂uj

∂xj

= Sij + Rij, where Sij = eij =

2



1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
and R =

1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
are the symmetric and antisymmetric parts of the

velocity gradient tensor, representing rate of strain and rotation, respectively. The dot product of
a symmetric tensor (τij) and an antisymmetric tensor Rij is zero. Hence,

∇ · (u · τ ) = ∂

∂xj

(uiτij) = τijSij ++uj
∂τij
∂xj

= τijeij + uj
∂τij
∂xj

= τ : S+ u · (∇ · τ ) . (14)

Using the constitutive equation for the deviatoric stress τ for a Newtonian fluid,

τij = 2µeij −
2

3
µ(∇ · u)δij , (15)

we obtain,

Φµ = τijeij = (2µeij −
2

3
µ(∇ · u)δij)eij = 2µeijeij −

2

3
µ(∇ · u)2 = 2µ

(
eij −

1

3
∇ · u

)2

. (16)

The above equation provides an expression for the rate of deformation work done by viscous
stresses. Thus, we obtain the expression for dW/dt as,

dW

dt
=

∫
V

 F b · u︸ ︷︷ ︸
Work done by body forces

+ u · (∇ · τ )︸ ︷︷ ︸
Increase in KE by surface stresses

− p(∇ · u)︸ ︷︷ ︸
Work done due to contraction or expansion

− u · ∇p︸ ︷︷ ︸
Work done by pressure gradient

+ Φµ︸︷︷︸
Deformation work by viscous stresses

 dV

(17)

Bringing it together

Using the expressions for dE/dt, dQ/dt and dW/dt, we obtain,

dE

dt
=

dQ

dt
+

dW

dt

⇒
∫
V

ρ
D

Dt

(
1

2
ρu2 + ρe

)
dV =

∫
V

[∇ · (k∇T ) + F b · u+ u · (∇ · τ )− p(∇ · u)− u · ∇p+ Φµ] dV

(18)

This is the energy equation for total energy of a collection of fluid parcels. Since it’s valid for any
arbitrary volume at all times, we can remove the integral signs and equate the integrands. We
obtain,

ρ
D

Dt

(
1

2
ρu2 + ρe

)
= ∇ · (k∇T ) + F b · u+ u · (∇ · τ )− p(∇ · u)− u · ∇p+ Φµ (19)
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1.1 Mechanical energy equation

The equation for mechanical energy can be derived separately by performing a dot product of
velocity on both sides of the equation of motion,

u · ρDu

Dt
= u · (−∇p+ F b +∇ · τ ) , (20)

which gives,

D

Dt

(
1

2
ρu2

)
= −u · ∇p+ F b · u+ u · (∇ · τ ) . (21)

1.2 Internal energy equation

Subtracting the mechanical energy equation (21) from the total energy equation (19), we obtain
the internal energy equation,

ρ
De

Dt
= ∇ · (k∇T )− p(∇ · u) + Φµ (22)

An interesting note

We can rewrite the mechanical energy equation (21), as

D

Dt

(
1

2
ρu2

)
= F b · u+ u · (−∇p+∇ · τ )

= F b · u+∇ · (−up+ u · τ )− (−p(∇ · u) + τ : S)

= F b · u+∇ · (−up+ u · τ ) + p(∇ · u)− Φµ .

(23)

The last two terms also appear in the internal energy equation but with opposite signs. The term
p(∇ · u) represents reversible work done by pressure or on pressure when the volume of collection
of fluid particles contracts or expands, this leads to an increase or decrease in internal energy,
respectively. The viscous dissipation term Φµ represents heat lost due to viscous friction and it
gives rise to heat - thus also converting mechanical energy to internal or thermal energy.

1.3 Change of variable to entropy, s

Here, we focus on a change of variable to entropy, s. We start with the first law of thermodynamics,

de = Tds− pdv = Tds− pd
1

ρ
= Tds+

p

ρ2
dρ . (24)

Substituting this in the internal energy equation (22), we obtain,

ρT
Ds

Dt
+

p

ρ

Dρ

Dt
= ∇ · (k∇T )− p(∇ · u) + Φµ . (25)

We notice that,
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p

ρ

Dρ

Dt
=

p

ρ

[
∂ρ

∂t
+ u · ∇ρ

]
=

p

ρ

[
∂ρ

∂t
+∇ · (ρu)− ρ(∇ · u)

]
= −p(∇ · u) .

(26)

Substituting in (25), we obtain,

ρT
Ds

Dt
= ∇ · (k∇T ) + Φµ . (27)

The thermal energy equation is often stated this way. We can make a further change of variables

in terms of temperature T and pressure p using ds =

(
∂s

∂T

)
p

dT +

(
∂s

∂p

)
T

dp =
Cp

T
dT − αT

ρ
dp,

where Cp is specific heat at constant pressure and αT is the thermal expansion coefficiant. We get,

ρCp
DT

Dt
− αTT

Dp

Dt
= ∇ · (k∇T ) + Φµ . (28)
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