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1 Conservation of mass

1.1 Using a Cartesian control volume

Figure 1: A cuboid control volume with axes along edges and lengths dx,dy and dz.

Consider a fluid with density ρ. Inside an infinitesimal cuboid ‘control volume’ V as shown in
figure 1, the total mass of fluid is given by ρ(dxdydz). If the flow velocity at the center of the
volume in the x-direction is ux, the rate at which mass flows into the volume is ρux(dydz) at the
center, since dydz is the surface area of the face along the y-z plane. On the right face away from
the origin, the mass flow rate is given by that in the center and an additional contribution due to
a gradient of mass flow rate along the x-direction:ρux +

∂

∂x
(ρux)dx/2︸ ︷︷ ︸

Gradient times distance

 dydz .

Similarly, on the left face near the origin, the mass flow rate is given by,
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ρux −
∂

∂x
(ρux)dx/2︸ ︷︷ ︸

Gradient times distance

 dydz .

Thus, we can write, for the x-direction:

Total rate of mass flow, x =

[
ρux −

∂

∂x
(ρux)dx/2

]
dydz−

[
ρux +

∂

∂x
(ρux)dx/2

]
dydz = − ∂

∂x
(ρux)dxdydz .

Similarly, for y- and z-directions, we get

Total rate of mass flow, y = − ∂

∂y
(ρuy)dxdydz

Total rate of mass flow, z = − ∂

∂z
(ρuz)dxdydz

The statement of conservation of mass can be written simply as,

Rate of change of mass = Total rate of mass flow .

Recalling that total mass in the volume is given by ρ(dxdydz), we can write the above as,

∂

∂t
ρ(dxdydz) = −

[
∂

∂x
(ρux) +

∂

∂y
(ρuy) +

∂

∂z
(ρuz)

]
dxdydz .

Since our control volume is fixed in time, we obtain,

∂

∂t
ρ+

∂

∂x
(ρux) +

∂

∂y
(ρuy) +

∂

∂z
(ρuz) = 0 . (1)

In vector notation, this can be written as,

∂ρ

∂t
+∇ · (ρu) = 0 (2)

1.2 More formal derivation

Consider an arbitrary volume V fixed in space and time with a surface S with surface normal n̂
(figure 2). The total change of mass in the volume V can be written as,

d

dt

∫
V

ρdV , (3)

and the total flux of mass through the surface S is,

−
∫
S

ρu · n̂dS .

One must keep in mind that n̂ is the normal to the surface everywhere, pointing outwards. Any
increase in mass takes place because of fluid mass moving normal to the surface inwards. Hence,
the negative sign. The conservation of mass can thus be written as,
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Figure 2: A control volume V with surface S and surface normal n̂.

Change of mass in volume V = Net mass flowing in or out of the volume through the surface S

⇒ d

dt

∫
V

ρdV = −
∫
S

ρu · n̂dS .

(4)

At this point, we make use of Gauss’s divergence theorem, which states that for any vector field F
in a volume V with surface S, ∫

V

∇ · F dV =

∫
S

F · n̂dS . (5)

In plain language this translates to “the sum of little changes on the inside = total big change on
the outside”. Using this, with F as ρu and equation (4), we get,

d

dt

∫
V

ρdV = −
∫
V

∇ · (ρu)dV . (6)

Since our volume is fixed in time, we can perform the time-derivative inside the integral sign and
obtain, ∫

V

[
∂ρ

∂t
+∇ · (ρu)

]
dV = 0 . (7)

Since this must hold true for any arbitrary volume, the integrand itself must be zero, which gives
us the equation for conservation of mass,

∂ρ

∂t
+∇ · (ρu) = 0 . (8)

1.3 Using a Lagrangian description

In a Lagrangian frame of reference, our reference frame moves with a collection of fluid particles.
Thus, the volume and surface under consideration change with time. For this collection of fluid
particles, mass conservation would simply be,
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d

dt

∫
V (t)

ρdV = 0 . (9)

Recall the Reynolds transport theorem,

d

dt

∫
V (t)

F dV =

∫
V (t)

∂F

∂t
dV +

∫
S(t)

F (u · n̂)dS , (10)

where, F can be a tensor, vector or scalar. Using it, we obtain,

d

dt

∫
V (t)

ρdV =

∫
V (t)

∂ρ

∂t
dV +

∫
S(t)

ρ(u · n̂)dS = 0 . (11)

As before, using the divergence theorem, we obtain,∫
V (t)

[
∂ρ

∂t
+∇ · (ρu)

]
dV = 0 . (12)

Since this must be true at all times for any choice of volume, the integrand must be zero, implying,

∂ρ

∂t
+∇ · (ρu) = 0 . (13)

Using vector identities, mass conservation can be written as,

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0

⇒ Dρ

Dt
= −ρ(∇ · u) ,

(14)

where we have used the Lagrangian material derivative, Dρ/Dt = ∂ρ/∂t + u · ∇ρ. The above
equation simply states something we could have guessed intuitively, that the change in density for
a fixed collection of fluid particles occurs due to an expansion or contraction.

1.4 Special cases

Constant density

When the density is constant in space and time, ∂ρ/∂t = 0 and ∇ρ = 0, and we obtain the mass
conservation for an incompressible fluid,

∇ · u = 0 . (15)

Density constant in time

If we can ignore the time variations of density, we obtain another simplified version of mass
conservation,

∇ · (ρu) = 0 . (16)

This is known as the ‘anelastic approximation’ and is extremely useful while studying cases where
the fluid density varies in space but its rate of change (typically in the form of sound waves) takes
place at a very different timescale compared to typical flow timescales. This is widely used to
study interiors of gas giant planets such as Jupiter and Saturn as well as stars, including the Sun.
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2 Conservation of momentum

Conservation of momentum is the statement of Newton’s second law which states that the rate of
change of momentum = force applied on an object. For a collection of fluid elements (Lagrangian
reference frame) this can be written as,

d

dt

∫
V (t)

ρudV =

∫
V (t)

F b︸︷︷︸
Body forces

dV +

∫
S(t)

τ︸︷︷︸
Surface stresses

·n̂dS . (17)

The most common body force on a fluid is gravity (= ρg, where g is acceleration due to gravity),
but in other cases, forces such as the magnetic Lorentz force can also play a role. The surface
stress tensor τ can be further related to the strain rate tensor S using a constitutive relationship.

We first simplify the left hand side of the equation using the Reynolds transport theorem,

d

dt

∫
V (t)

ρudV =

∫
V (t)

∂

∂t
(ρu) +

∫
S(t)

ρu(u · n̂)dS

=

∫
V (t)

[
∂

∂t
(ρu) +∇ · (ρu⊗ u)

]
dV ,

(18)

where we have used the divergence theorem. The last term on the RHS represents the divergence
of a dyad, the symbol ⊗ represents a tensor product. We use the derivative chain rule on the first
term on the RHS and the identity for the divergence of a dyadic product,

∇ · (ab) = (∇ · a)b+ (a · ∇)b , (19)

on the second term and obtain,

d

dt

∫
V (t)

ρudV =

∫
V (t)

[
u
∂ρ

∂t
+ ρ

∂u

∂t
+∇ · (ρu) + ρu · ∇u

]
dV

=

∫
V (t)

u
(
∂ρ

∂t
+∇ · (ρu)

)
︸ ︷︷ ︸
=0, mass conservation

+ρ

(
∂u

∂t
+ u · ∇u

) dV

=

∫
V (t)

[
ρ

(
∂u

∂t
+ u · ∇u

)]
dV ,

(20)

where we have used the mass conservation equation (13). Substituting this in equation (18), we
obtain, ∫

V (t)

[
ρ

(
∂u

∂t
+ u · ∇u

)]
dV =

∫
V (t)

F bdV +

∫
S(t)

τ · n̂dS . (21)

Using the divergence theorem yields,∫
V (t)

[
ρ

(
∂u

∂t
+ u · ∇u

)]
dV =

∫
V (t)

[F b +∇ · τ] dV . (22)

5



Since this holds true for all volumes at all times, we can drop the integral signs, and get,

ρ

(
∂u

∂t
+ u · ∇u

)
= F b +∇ · τ (23)

This is known as the Cauchy equation and is the most general equation of motion. We will now
derive the equation for a specific constitutive relationship between the stress and rate of strain
tensors, τ and S, respectively.

3 The Navier-Stokes equation

For a Newtonian fluid, we can relate the stress tensor τ and rate of strain tensor S using,

τij = −pδij + 2µSij + λSmmδij︸ ︷︷ ︸
∇·u

, (24)

In vector notation, Smmδij = ∇ · u and Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
=

1

2

(
∇u+ (∇u)T

)
, where

∇u =



∂u1

∂x1

∂u1

∂x2

∂u1

∂x3

∂u2

∂x1

∂u2

∂x2

∂u2

∂x3

∂u3

∂x1

∂u3

∂x2

∂u3

∂x3


, (25)

is the velocity gradient tensor. Considering the diagonal (isotropic) components on both sides of
equation (24),

τii = −3p+ (2µ+ 3λ)Smm = −3p+ (2µ+ 3λ)(∇ · u) , (26)

which gives

p = −1

3
τii +

(
λ+

2

3
µ

)
(∇ · u) , (27)

where, ζ =

(
λ+

2

3
µ

)
is referred to as the bulk or volume viscosity. Here, p is the thermodynamic

pressure. It is related to the mechanical pressure p̄ = −1

3
τii by,

p− p̄ =

(
λ+

2

3
µ

)
(∇ · u) . (28)

In the study of compressible flows, a common hypothesis that is adopted is the Stokes assump-
tion/hypothesis which states that the bulk viscosity, ζ = 0 and thus, making thermodynamic and
mechanical pressures equivalent. It can be shown to be true for monoatomic gases and has been
seen to be true for other gases and liquids. With this assumption, we can write the stress tensor
as,
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τij = −pδij + 2µ

(
Sij −

1

3
Smmδij

)
. (29)

In vector notation,

τ = −pI+ 2µ

[
1

2

(
∇u+ (∇u)T

)
− 1

3
(∇ · u)I

]
, (30)

I being the identity matrix.
Substituting this expression in the Cauchy equation (23), we obtain,

ρ

(
∂u

∂t
+ u · ∇u

)
= F b +∇ ·

[
−pI+ 2µ

[
1

2

(
(∇u) + (∇u)T

)
− 1

3
(∇ · u)I

]]
⇒ ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ F b +∇ ·

(
2µ

[
1

2

(
∇u+ (∇u)T

)
− 1

3
(∇ · u)I

])
.

(31)

This is known as the Navier-Stokes equation .

Incompressible fluid

In case of an incompressible fluid, ∇ · u = 0. Further, if the dynamic viscosity, µ, is assumed to
be constant, we obtain a simplified version of the Navier-Stokes equation,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ F b + µ∇2u . (32)

where we have used, ∇ · (∇u) = ∇2u and ∇ · (∇u)T = ∇(∇ · u) = 0. Using gravity for the body
force yields a common version of the Navier stokes:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρg + µ∇2u . (33)

Euler equation

Ignoring viscous effects gives us the Euler equation ,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρg . (34)
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